Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Н.В. Чернобровов Релейная защита

.pdf
Скачиваний:
13254
Добавлен:
06.11.2017
Размер:
45.6 Mб
Скачать

Компенсирующее устройство представляет собой фильтры напряжения прямой и обратной последовательностей U1 и U2, питающие трансформаторы ТК1 и ТК2 соответственно. На выходе трансформаторов получаются напряжения UК1 и UК2, пропорциональные прямой и обратной последовательности емкостных токов линии (IС1 и IС2): Uк1 IС1, UК2 Iс2.

Как видно из рис. 14-9, эти напряжения включаются в выходную цепь трансформатора манипуляции ТМ, питаемого фильтром Фм, и уничтожают (компенсируют) емкостные составляющие напряжения UМ, обусловленные емкостными токами Ic1 и Iс2.

На рис. 14-10 приведены векторные диаграммы токов обратной последовательности на обоих концах линии, поясняющие компенсацию емкостных токов обратной последовательности 1С2. Векторные диаграммы построены без учета активных составляющих сопротивлений сети.

Диаграммы показывают, что в результате компенсации сравниваемые вторичные токи на обоих концах линии при внешних к. з. получаются равными по величине и сдвинутыми по фазе на 180°. С помощью аналогичных диаграмм можно пояснить компенсацию емкостных токов прямой последовательности.

Для устранения влияния токов с частотой, отличной от 50 Гц, возникающих при неустановившихся режимах в сетях 500 кВ, предусмотрен специальный частотный фильтр. Фильтр состоит из дросселя ДР1 и емкостей С3 и С2 (рис. 14-9), включенных на выходе органа манипуляции. Фильтр пропускает только токи с частотой 50 Гц. Защита ДФЗ-501 получила широкое распространение в СССР на линиях 500 кВ [Л. 59, 60]. Готовится к выпуску защита типа ДФЗ-503 с улучшенными схемами отдельных узлов: органа манипуляции, блокировки от нарушения цепей напряжения и др.

14-2.ЗАЩИТАЛИНИЙ СОТВЕТВЛЕНИЯМИ

а) Линии с ответвлениями

За последнее время широкое распространение получают линии с ответвлениями, к которым подключаются подстанции, имеющие или не имеющие источников питания, как показано на рис. 14-11. Подключение таких подстанций к магистральным линиям может выполняться с выключателями на стороне высшего напряжения (рис. 14-11, а) или по упрощенным схемам — без выключателей (рис. 14-11, б).

В последнем случае возможны следующие варианты выполнения защиты и отключения трансформаторов, подключенных на ответвлениях, в случае их повреждения;

1.Защита трансформаторов осуществляется защитами магистральной линии на выключателях А и В. В этом случае трансформатор Т подключается к линии наглухо (рис.

14-11, б).

2.Защита трансформатора на ответвлении выполняется с помощью плавких предохранителей П (рис. 14-11, в).

3.На трансформаторе ответвления устанавливается релейная защита С от внутренних повреждений, которая действует на включение специального автоматического разъединителя К, называе мого короткозамыкателем (рис. 14-11, г). При повреждении в трансформаторе корот-

козамыкатель K включается и устраивает к. з. (однофазное или двухфазное), на которое реа-

гирует защита магистральной линии, отключающая выключатели А и В. После отключения линии работает автоматический отделитель О, отключающий поврежденный трансформатор, и затем магистральная линия Л1 включается в работу с помощью АПВ.

Таким образом, в рассмотренном варианте на трансформаторе устанавливаются отделитель и короткозамыкатель.

4. Как и в предыдущем случае, на трансформаторе устанавливается защита С. При повреждении в трансформаторе она срабатывает и посылает по специальным каналам (проводным или высоко частотным по линиям электропередачи) импульс на отключение выключателей А и В линии (рис. 14-11, д).

341

Этот способ требует дорогостоящих каналов связи. Но он позволяет быстрее отключать поврежденный трансформатор и упрощает силовую часть трансформатора.

Наибольшее распространение на практике получили первые три варианта.

Подключение ответвлениями применяется как на одинарных, так и на параллельных линиях. В последнем случае трансформаторы, подключенные к разным линиям, работают раздельно на стороне низшего напряжения (рис. 14-11, ё). При отключении одной из линий или трансформатора с помощью АВР включается секционный выключатель Всекц и питание потребителей секции, потерявшей напряжение, восстанавливается от второго трансформатора.

Выполнение релейной защиты линий с маломощными трансформаторами на ответвлениях обычно не вызывает затруднения.

Осуществление же защиты линий с ответвлениями, имеющими мощные трансформаторы, и особенно при наличии со стороны ответвления источников питания наталкивается на некоторые трудности в части обеспечения селективности, быстроты действия и чувствительности. Однако подключение подстанций с помощью ответвлений дает значительное удешевление их сооружения, позволяет экономить оборудование и аппаратуру, ускоряет строительство подстанций и удешевляет их эксплуатацию. Поэтому разработку вопросов защиты линий с ответвлениями следует считать важной и нужной задачей.

Рассмотрим применение основных видов защит на линиях с ответвлением.

б) Токовые и дистанционные защиты со ступенчатой характеристикой

Токовые ступенчатые защиты, реагирующие на ток фазы. На линиях с ответвле-

ниями такие защиты устанавливаются на питающих концах линии (рис. 14-12). Для обеспечения селективности ток срабатывания быстродействующей ступени защиты (отсечка с t = 0) отстраивается не только от к. з. за пределами защищаемой линии (точки К1 и К2), но и от к. з. в К3 за трансфрматором отпайки (рис. 14-12) по выражению

где IК3макс — ток при к.з. в Кз; этот ток имеет максимальное значение при отключении линии на противоположном конце. При большой мощности трансформатора ответвления ток

342

IК3макс может оказаться больше, чем ток при к. з. в К2 или К1, что приведет к уменьшению зоны отсечки.

Неселективное действие первой ступени защиты при к. з. в трансформаторе ответвления исправляется с помощью АПВ следующим образом. При к. з. в трансформаторе линия и трансформатор отключаются одновременно. Затем после автоматического отключения отделителя (рис. 14-11, г, е) линия включается от АПВ. Селективность второй и третьей ступени защит А и В линии к. з. на ответвлении обеспечивается согласованием выдержек времени этих ступеней с защитами Мт трансформатора ответвления. Третья зона защиты линий должна резервировать отказ выключателя С и максимальной защиты МТ трансформатора ответвления. При маломощных трансформаторах это требование часто оказывается трудно осуществимым.

При наличии источников питания на ответвлении защиты линий следует выполнять направленными, что облегчает выполнение условий селективности при к. з. за пределами линии.

Токовые защиты нулевой последовательности. По условию селективности вторая и третья зоны защиты линии должны согласовываться с защитами трансформатора ответвления по времени, а первая зона защиты должна отстраиваться от к. з. за трансформатором, если при этом в линии АВ появляются токи нулевой последовательности. При соединении обмоток трансформатора по схеме λ /∆ в случае замыкания на землю в сети тре-

угольника токи I0 в линии отсутствуют и поэтому наличие ответвления не влияет на чувствительность первой ступени линейных защит А и В.

На чувствительность линейных защит нулевой последовательности и В) оказывает влияние состояние нейтрали Н трансформаторов, подключенных к ответвлению (рис. 1412). Если нейтраль Н не заземлена, то ток 3I, проходящий в месте к. з. (в точке К4), распределяется между концами линии и В) обратно пропорционально сопротивлениям, нулевой последовательности обеих ветвей.

При заземлении нейтрали Н и к. з. в К4 часть тока 3Iзамыкается через нейтраль ответвления, вследствие чего токи

3I0A и 3Iна концах линии уменьшаются. Степень уменьшения зависит от соотношения параметров сети, линии и трансформатора ответвления. Для повышения чувствительно-

сти защиты на линиях с ответвлениями трансформатор ответвления желательно не заземлять.

Дистанционные защиты. По соображениям селективности первая зона защиты отстраивается от к. з. за трансформатором ответвления (точка К8 на рис. 14-12), а вторая и третья — согласуются по времени с соответствующими защитами трансформатора ответвления (см. § 11-18).

в) Дифференциальные защиты

Поперечная направленная дифференциальная защита может устанавливаться на па-

раллельных линиях с ответвлениями, но при этом необходимо учитывать два обстоятельства:

1.Наличие ответвлений нарушает равенство токов в параллельных линиях Л1 и Лг в нормальном режиме, I1 ≠ I2 (рис. 14-13, а),поэтому в реле появляется ток

2.При к. з. за трансформатором ответвления защита приходит в действие, стремясь отключить линию с поврежденным ответвлением, что следует из токораспределения на рис.

14-13, б.

343

Для предупреждения неправильного действия поперечной дифференциальной защиты в нормальном режиме ее ток срабатывания отстраивается от тока небаланса, обусловленного нагрузкой ответвлений:

Для исключения работы защиты во втором случае, при к. з. на ответвлении, необходимо

выполнить условие:

где I1(K3) и /2(К3) — токи к. з., проходящие по Л1 и Л2 в месте установки защиты при к. з. в К3 за одним из трансформаторов ответвления.

При наличии источников питания на ответвлениях появляется возможность неправильной работы поперечной дифференциальной защиты при к. з. вне параллельных линий, в чем можно убедиться из рассмотрения токораспределения в Л1 и Л2. Исключение этого недостатка возможно только отстройкой тока срабатывания защиты.

Продольная дифференциальная защита. На линиях с от-

ветвлением эта защита может неправильно действовать при к. з. за трансформатором ответвления (в точке К3).

Как следует из рис. 14-14, токи по концам защищаемой линии в этом случае направлены от шин в линию (к месту к. з.), так же как и при к. з. на линии. Для исключения неправильной работы защиты ток срабатывания дифференциальных реле должен

быть больше тока в них при к. з. в К3, т. е. Iс.з > IK3. Это условие можно выполнить только при маломощном трансформаторе от-

ветвления, когда ток к. з. 1кз имеет небольшую величину. Поэтому продольная дифференциальная защита типа ДЗЛ в большинстве случаев оказывается неприменимой на линиях с ответвлениями. Для линий с ответвлениями необходима особая схема защиты, реа-

гирующая на геометрическую сумму токов на концах линии и в ответвлении. Такие защиты еще находятся в стадии разработки.

г) Высокочастотные защиты [Л.91]

Дифференциально-фазная защита. На линиях с ответвлением дифференциальнофазная защита, основанная на сравнении фаз токов 1А И 1В по концам линии (рис. 14-15, а), действует неправильно при к. з. в точке К3 за трансформатором ответвления.

В этом случае токи по концам линии 1А И 1В совпадают по фазе, поэтому высокочастотные импульсы имеют прерывистый характер (рис. 14-15,-6) и защита работает, так же как и при повреждении на защищаемой линии.

Неправильное действие защиты в рассматриваемом случае можно предотвратить

344

двумя способами: 1) отстройкой пускoвых реле, управляющих цепью отключения защиты, от к. з. за трансформатором, ответвления жги применением блокирующих реле, также отстроенных от к. з. за трансформатором [Л. 64] и 2) установкой дополнительного неполного комплекта дифференциально-фазной защиты на ответвлении.

В п е р в о м с л у ч а е при к. з. за трансформатором ответвления пусковые реле в цени отключения защиты, установленной на обоих концах линии, не будут срабатывать и поэтому защита не сможет подействовать на отключение.

Отстройка пусковых реле от к. з. за трансформатором ведется в режиме, когда линия отключена на противоположной стороне, так как в этом случае токи к. з. и их симметричные составляющие в рассматриваемом комплекте защиты будут наибольшими.

Данный способ применим при условии, что коэффициент чувствительности пусковых реле при к. з. на ответвлении (точка К2) и на противоположной стороне линии (точка К2) будет достаточным для надежной работы защиты (т. е. если кч ≥ 2).

Вт о р о й с п о с о б применяется, если отстройка пусковых органов защиты по условиям

еечувствительности невозможна.

Вэтом случае на ответвлении устанавливается дополнительный неполный комплект С дифференциально-фазной защиты (рис. 14-16), используемый для блокирования комплектов А и В, при повреждениях за трансформатором ответвления, установленных на концах линии. Этот комплект С состоит из высокочастотного передатчика, пускающих его пусковых реле (рис. 14-16, в) и блока манипуляции, управляющего работой передатчика (см. рис.

12-21).

При к. з. за трансформатором ответвления ток в ответвлении сдвинут по фазе на 180° относительно токов IA и 1В на концах линии (рис. 14-16, а).

Вэтих условиях передатчики на концах линии работают в положительные полупериоды

токов IA и IA, а передатчик на ответвлении — в отрицательный полупериод этих токов. Ток высокой частоты генерируется непрерывно, как и при внешнем к. з., защита ДФЗ не работает (рис. 14-16, б).

Вслучае наличия источников питания со стороны ответвления на последнем устанавливается п о л н ы й комплект дифференциально-фазной защиты. Рассмотрев распределение токов по концам линии и на ответвлении, нетрудно убедиться, что дифференциально-фазная защита, состоящая из трех полных комплектов, будет работать правильно при всех случаях повреждений. Готовится к выпуску фильтровая, в. ч. защита типа НФЗО для линий 110— 330 кВ с ответвлениями.

345

Направленные защиты с высокочастотной блокировкой. Для обеспечения правиль-

ной работы защиты в общем случае (при наличии питания со стороны ответвления) нео б- ходимо устанавливать комплекты защиты с трех сторон линии А В и С (рис. 14-17).

При к. з. за трансформатором ответвления в точке К3 мощность к. з. Sс на ответвлении направлена к шинам (рис. 14-17), комплект С пускает в. ч. передатчик, который посылает блокирующие импульсы, запрещающие работать комплектам А и В. При к. з. на линии последняя будет отключаться с. трех сторон комплектами защиты А, В и

С.

При отсутствии источников питания со стороны ответвления на последнем достаточно установить только в. ч. передатчик и пускающие его пусковые реле(рис. 14-18), с тем чтобы комплект С блокировал защиты А и В при к. з. за ответв лениемв точке К3.

Комплект С можно не ставить, если пусковые реле защит А и В можно отстроить от к. з. в точке К3 без ущерба для чувствительности защиты при повреждении на защищаемой линии.

346

ГЛАВА ПЯТНАДЦАТАЯ

ЗАЩИТА ГЕНЕРАТОРОВ

15-1. ПОВРЕЖДЕНИЯ И НЕНОРМАЛЬНЫЕ РЕЖИМЫ РАБОТЫ ГЕНЕРАТОРОВ, ОСНОВНЫЕ ТРЕБОВАНИЯ К ЗАЩИТЕ ГЕНЕРАТОРОВ

а) Виды повреждений генераторов

Большинство повреждений генератора вызывается нарушением изоляции обмоток статора и ротора. Эти нарушения обычно происходят вследствие старения изоляции, ее увлажнения, наличия в ней дефектов, а также в результате повышения напряжения, перенапряжений, механических повреждений, например из-за вибрации стержней обмоток и стали магнитопровода. Поэтому в принципе повреждения возможны в любой части обмоток.

Повреждения в статоре. В статоре возникают междуфазные (двухфазные и трехфазные) к. з., замыкание одной фазы на корпус (на землю), замыкание между витками обмотки одной фазы. Наиболее часто происходят междуфазные к. з. и замыкания на корпус.

М е ж д у ф а з н ы е к. з. сопровождаются прохождением в месте повреждения очень больших токов (десятки тысяч ампер) и образованием электрической дуги, вызывающей выгорание изоляции и токоведущих частей обмоток, а иногда и стали магнитопровода статора.

З а м ы к а н и е о б м о т к и с т а т о р а на к о р п у с является замыканием на землю, так как корпус статора связан с землей. При этом ток повреждения проходит в землю всегда через сталь магнитопровода статора, выжигая ее. Повреждение стали требует длительного и сложного ремонта.

З а м ы к а н и е в и т к о в о д н о й ф а з ы . В замкнувшихся накоротко витках протекает большой ток, разрушающий изоляцию обмоток. Этот вид повреждения часто переходит в замыкание на землю или в замыкание между фазами.

З а щ и т ы от м е ж д у ф а з н ы х к. з. и в и т к о в ых з а м ы к а н и й должны быть быстродействующими и настолько чувствительными, чтобы они могли действовать при повреждениях вблизи нулевой точки генераторов и при малом числе замкнувшихся витков в одной фазе.

Повреждения в роторе. Обмотка ротора генератора находится под невысоким напряжением (300—500 В), поэтому ее изоляция имеет значительно больший запас прочности, чем изоляция статорной обмотки. Однако из-за тяжелых механических условий работы обмотки ротора, вызываемых большой частотой вращения (1500— 3000 об/мин), относительно часто наблюдаются случаи повреждения изоляции и замыкания обмотки ротора на корпус (т. е. на землю) в одной или двух точках.

З а м ы к а н и е на к о р п у с в о д н о й т о ч к е об м о т к и р о т о р а неопасно, так как ток в месте замыкания практически равен нулю и нормальная работа генератора не нарушается. Но при этом повышается вероятность возникновения опасного для генератора аварийного режима в случае появления второго замыкания на корпус в другой точке цепи возбуждения.

П р и д в о й н ы х з а м ы к а н и я х часть витков обмотки ротора оказывается зашунтированной (см. рис. 15-35); сопротивление цепи ротора при этом уменьшается и в ней появляется повышенный ток. Этот ток перегревает обмотки ротора и питающего ее возбудителя, вызывает дальнейшие разрушения в месте повреждения и может вызвать горение изоляции ротора.

Кроме того, из-за нарушения симметрии магнитного потока в воздушном зазоре между ротором и статором, обусловленного замыканием части витков обмотки ротора, возникает сильная механическая вибрация, опасная для генератора. Особенно большая и опасная вибрация появляется при двойном замыкании на землю на гидрогенераторах и синхронных компенсаторах (СК), имеющих явнополюсные роторы. Поэтому на гидрогенераторах и крупных СК целесообразно устанавливать защиту, сигнализирующую первое замыкание на

347

Iном.г.

землю в роторе. При срабатывании этой защиты гидрогенератор останавливают для устранения повреждения. Для турбогенераторов двойное замыкание менее опасно, поэтому турбогенераторы допускается оставлять в работе при первом замыкании в роторе. Специальной защиты от этого вида повреждения можно не ставить. Замыкание на землю в роторе обнаруживается при измерении его изоляции, проводимом периодически на работающем генераторе.

Однако на мощных турбогенераторах 300 мВт и более установка такой защиты, осуществляющей непрерывный контроль за изоляцией ротора, следует признать целесообразной.

На турбогенераторах при первом замыкании обмотки ротора на корпус устанавливается защита от двойного замыкания на землю.

На генераторах малой мощности защиту разрешается выполнять с действием на сигнал. На мощных генераторах 200 мВт и выше защита выполняется с действием на отключение.

б) Ненормальные режимы

Ненормальными режимами генератора считаются: опасное увеличение тока в статоре или роторе сверх номинального значения (с в е р х т о к и), несимметричная нагрузка фаз статора, опасное повышение напряжения на статоре, асинхронный и двигательный режимы работы генератора.

Рассмотрим кратко причины и характер ненормальных режимов.

Повышенные токи (сверхтоки) в генераторе возникают при внешних к. з. или перегрузках.

При внешних к. з. в генераторе, питающем место повреждения, появляется ток к. з. Iк > Нормально такие к. з. ликвидируются защитой поврежденного элемента и неопасны

для генератора.

Однако в случае отказа защиты или выключателя этого элемента ток к. з. в генераторе будет проходить длительно, нагревая его обмотки. Повышенный нагрев может привести к повреждению последних. Предупредить подобное повреждение можно только путем отключения генератора.

Для этой цели на генераторе должны предусматриваться защиты, реагирующие на внешние к. з. и резервирующие отказ защиты или выключателей смежных элементов.

Перегрузка генератора обычно возникает в результате отключения или отделения части параллельно работающих генераторов системы; кратковременных толчков нагрузки, вызванных технологией производственных процессов у потребителей; самозапуска двигателей; форсировки возбуждения генератора; нарушения синхронизма; потери возбуждения у генератора и тому подобных причин.

Перегрузка, т. е. увеличение тока нагрузки в обмотках генератора сверх номинального значения Iг > Iном, так же как и внешнее к. з., вызывает перегрев обмоток и может привести к порче изоляции, если ее температура превзойдет некоторое предельное значение Тºдоп.макс опасное для изоляции.

При прохождении тока перегрузки температура изоляции достигает предельного значения через некоторое время tдоп, зависящее от величины тока Iг. Характер этой зависимости

tдоп = f(Iг/Iном) показан на рис. 15-1.

 

 

 

Допустимое время tдоп для генераторов

с косвенным охлаждением

определяется по формуле tдоп =

150

 

,где k — кратность тока пере-

 

 

k 2 1

грузки к номинальному.

Для ограничения размеров и массы, снижения стоимости и уменьшения затрат дефицитных материалов мощные генераторы выполняются с повышенной магнитной индукцией в магнитопроводе машины, с повышенной плотностью тока в обмотках статора и ротора, пониженными термическими запасами и вследствие этого с более интенсивной (форсированной)

348

системой охлаждения.

В качестве последней принята система непосредственного охлаждения обмоток, осуществляемая подачей охлаждающей среды (водорода, воды, масла) во внутреннюю полость проводников обмоток статора и ротора. Охлаждающая среда циркулирует по специальным каналам внутри проводников обмоток.

Отечественные заводы выпускают генераторы:

ТВФ — с непосредственным охлаждением ротора водородом; ТГВ—с непосредственным охлаждением водородом ротора и статора;

ТВВ — с непосредственным охлаждением статора водой и ротора водородом;

ТВМ — с непосредственным охлаждением статора маслом, а ротора водой.

Допустимое время перегрузки мощных генераторов зависит от типа охлаждения, соответствующие данные для обмоток статора приведены в табл. 15-1 и для обмоток ротора — в

табл. 15-2 [Л. 100].

Как следует из таблиц, перегрузка статора до 30% на генераторах с непосредственным охлаждением и до 50% на генераторах с косвенным охлаждением допускается в течение 2 мин и более, поэтому при таких перегрузках не требуется немедленного автоматического отключения генератора.

Во многих случаях перегрузки, обусловленные форсировкой возбуждения, синхронными качаниями, кратковременными толчками нагрузки у потребителя и т. п., ликвидируются сами по себе до истечения предельного времени tдоп. При авариях в системе с дефицитом генераторной мощности предусматривается автоматическая разгрузка путем отключения части потребителей при снижении частоты, а также автоматический и ручной ввод резерва активных и реактивных мощностей. Такими путями предупреждается и ликвидируется длительная

349

перегрузка генераторов при недостатке генераторной мощности.

Отключение генераторов при перегрузках допускается только в тех случаях, когда принятые меры по их разгрузке не дают результата, а допустимое время перегрузки истекло.

С учетом сказанного защита от перегрузки генераторов на электростанциях с дежурным персоналом устанавливается с действием на сигнал. На автоматизированных электростанциях защита от перегрузки выполняется с действием на отключение или разгрузку генераторов по истечении допустимого времени перегрузки. Аналогичное исполнение защиты желательно иметь и на мощных генераторах, так как на этих генераторах при перегрузках, превышающих 30%, tдоп достаточно мало и дежурный персонал не успеет произвести своевременную разгрузку их.

Несимметрия токов в фазах генераторов возникает при двухфазных и однофазных к. з. вне генератора, при обрывах одной или двух фаз цепи, связывающей генератор с нагрузкой, и при неполнофазном режиме работы в сети. Несимметрия токов приводит к дополнительному нагреванию ротора и механической вибрации машины.

Несимметрия сопровождается появлением в обмотке статора токов обратной последовательности /2, эти токи имеют обратное чередование фаз и создают магнитное поле, вращающееся в сторону, противоположную вращению ротора. В результате этого поток, созданный токами /2, пересекает корпус ротора с двойной скоростью. Он индуктирует в металлических частях ротора (в бочке ротора) значительные вихревые токи, имеющие двойную частоту, и создает дополнительный, пульсирующий с двойной частотой элек-

тромагнитный момент. Вихревые токи вызывают повышенный нагрев ротора, апульсирующий момент— вибрацию вращающейся части машины.

Несимметрия токов особенно опасна для крупных современных турбо- и гидрогенераторов ТВФ, ТВВ, ТГВ, ТВМ, выполняемых, как указывалось выше, с пониженным тепловым запасом. С учетом термических и механических характеристик отечественных генераторов допускается их длительная работа с неравенством (несимметрией) токов по фазам, не превышающим 10% для турбогенераторов и 20% для гидрогенераторов и синхронных компенсаторов, при условии, что ток в фазах не превосходит номинального значения.

При указанной несимметрии ток I2 составляет около 5 и 10% Iном.г соответственно, эти значения являются максимальными длительно допустимыми токами I2макс.длит.доп и их можно рассматривать как номинальные (предельные) токи обратной последовательности генератора.

Ток I2 > I2макс.длит.доп вызывает опасный дополнительный нагрев ротора и может допускаться лишь в течение ограниченного времени tдоп.

Величина допустимого времени tдоп определяется предельной температурой Тºпред, допустимой для изоляции обмотки ротора и отдельных, наиболее подверженных нагреву элементов ротора: бандажных колец, зубцов, металлических пазовых клиньев.

Непосредственно нагрев ротора происходит от тепла, выделенного вихревыми токами Iв.т, возникающими в корпусе ротора, но так как последние индуктируются токами статора I2 и ему пропорциональны Iв.Т = kI2, то количество тепла, выделенное вихревыми токами,

При адиабатическом процессе нагрева (без отдачи в окружающую среду) предельные температуры Тºпред, достигаются при определенном, постоянном для данного типа генератора количестве тепла Qпред. Характеризуя эту величину постоянной А, получаем уравнение нагрева ротора в зависимости от значения тока I2:

откуда

где I2*- кратность среднего за время tдоп действующего значения тока I2 к Iном.г; А — тепло-

350