Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
сопромат вопросы.doc
Скачиваний:
76
Добавлен:
24.07.2017
Размер:
448.51 Кб
Скачать
  1. Внутренние силовые факторы в брусе и их связь с напряжением.

Перемещения в пространственном брусе малой кривизны при произвольной нагрузке

При нагружении пространственного бруса в его поперечных сечениях могут возникать одновременно все шесть внутренних силовых факторов: нормальная сила N, перерезывающие силы Qy и Qz крутящий момент Mx и изгибающие моменты My и Mz. Некоторое влияние на распределение напряжений в сечении бруса оказывает кривизна оси бруса. Однако это влияние становится значимым только при отношении радиуса кривизны оси к высоте соответствующего поперечного сечения бруса меньше 5. Такой брус называют брусом большой кривизны, или просто кривым брусом. В стержневых системах элементы типа бруса большой кривизны встречаются достаточно редко.

В брусе малой кривизны влияние кривизны оси на напряжения и деформации незначительно, и поэтому расчет таких брусьев на изгиб с достаточной точностью можно производить по формулам для прямого бруса.

Если при определении внутренних силовых факторов в качестве осей y, z выбрать главные центральные оси сечения, то напряжения в сечении бруса малой кривизны можно вычислить по формулам

(11.1)

(11.2)

(11.3)

Перемещение центра тяжести сечения C, или, иначе, перемещение точки C оси бруса вычисляется при изгибе на основании интеграла Мора по формуле (8.43). Вывод интеграла Мора, приведенный в разделе 8.11 можно легко распространить и на случай растяжения (сжатия), кручения и т.д. Таким образом, перемещение сечения бруса в общем случае определяется следующим уравнением:

(11.4)

где безразмерные коэффициенты Ky, Kz (см. раздел 8.7) учитывают неравномерность распределения касательных напряжений при изгибе бруса.

Уравнение (11.4) называется интегралом Мора для пространственного бруса малой кривизны. В это равенство входят внутренние силовые факторы в текущем сечении бруса, вычисленные относительно главных центральных осей инерции сечения. Произведение силового фактора от заданной нагрузки на соответствующий силовой фактор от единичной нагрузки считается положительным, если эти факторы совпадают по направлению.

Формула (11.4) позволяет вычислить только проекцию полного перемещения сечения бруса на заданное направление. Для определения полного перемещения δ вычисляют проекции этого перемещения на три взаимно перпендикулярных направления (направления главных центральных осей y, z и касательной к оси x бруса), а затем находится δ:

(11.5)

Слагаемые правой части (11.5) по своей относительной величине неравноценны и соотношение между ними зависит от типа конструкции. Например, для подавляющего большинства рам влияние на их деформации перерезывающих и нормальных сил существенно меньше влияния изгибающих и крутящих моментов. Поэтому при определении перемещений сечений рам тремя последними слагаемыми формулы (11.4) обычно пренебрегают.

Интеграл Мора для плоских рам принимает такой же вид, как и для балок:

(11.6)

На прямолинейных участках рам этот интеграл удобно вычислять перемножением эпюр способом Верещагина или методом «дирижера».

  1. Метод сечений

1.3. Внешние и внутренние силы. Метод сечений

Силы являются мерилом механического взаимодействия тел. Если конструкция рассматривается изолированно от окружающих тел, то действие последних на нее заменяется силами, которые называются внешними. Внешние силы, действующие на тело, можно разделить на активные (независимые) и реактивные. Реактивные усилия возникают в связях, наложенных на тело, и определяются действующими на тело активными усилиями.

По способу приложения внешние силы делятся на объемные и поверхностные.

Объемные силы распределены по всему объему рассматриваемого тела и приложены к каждой его частице. В частности, к объемным силам относятся собственный вес сооружения, магнитное притяжение или силы инерции. Единицей измерения объемных

сил является сила, отнесенная к единице объема - кН/м3 .

Поверхностные силы приложены к участкам поверхности и являются результатом непосредственного контактного взаимодействия рассматриваемого объекта с окружающими телами. В зависимости от соотношения площади приложения нагрузки и общей площади поверхности рассматриваемого тела, поверхностные нагрузки под­разделяются на сосредоточенные и распределенные. К первым относятся нагрузки, реальная площадь приложения которых несоизмеримо меньше полной площади поверхности тела (например, воздействие колонн на фундаментную плиту достаточно больших размеров можно рассматривать как действие на нее сосредоточенных усилий). Если же площадь приложения нагрузки сопоставима с площадью поверхности тела, то такая нагрузка рассматривается как распределенная. Сосредоточенные усилия измеряются в кН, а распределенные - кН/м2.

Взаимодействие между частями рассматриваемого тела характеризуется внутренними силами, которые возникают внутри тела под действием внешних нагрузок и определяются силами межмолекулярного воздействия.

Величины внутренних усилий определяются с применением метода сечений, суть которого заключается в следующем. Если при действии внешних сил тело находится в состоянии равновесия, то любая отсеченная часть тела вместе с приходящимися на нее внешними и внутренними усилиями также находится в равновесии, следовательно, к ней применимы уравнения равновесия.

Рассмотрим тело, имеющее форму бруса (рис. 1.2, а).

Рис. 1.2

Пусть к нему приложена некоторая система внешних сил Р1, Р2, Р3,..., Рn , удовлетворяющая условиям равновесия, т.е. при действии указанных внешних сил тело находится в состоянии равновесия.

Если рассечь брус сечением А на две части и правую отбросить, то, т.к. связи между частями тела устранены, необходимо действие правой (отброшенной) части на левую заменить некоей системой внутренних сил (PА ), действующей в сечении А (рис. 1.2, б).

Обозначая через Pлев и Рправ суммы внешних сил, приложенных соответственно, к левой и правой частям бруса (относительно сечения А), и учитывая, что

Pлев + Рправ = 0 (1.1)

для отсеченных частей бруса получим следующие очевидные соотношения:

Рлев + PA = 0; Рправ - PA = 0. (1.2)

Последние соотношения показывают, что равнодействующая внутренних сил РА в сечении А может определяться с равным успехом из условий равновесия либо левой, либо правой частей рассеченного тела. В этом суть метода сечений.

Внутренние усилия должны быть так распределены по сечению, чтобы деформированные поверхности сечения А при совмещении правой и левой частей тела в точности совпадали. Это требование в механике твердого деформируемого тела носит название условия неразрывности деформаций.

Воспользуемся правилами статики и приведем систему внутренних сил РА к центру тяжести сечения А в соответствии с правилами теоретической механики. В результате получим главный вектор сил и главный вектор момента (рис. 1.3). Далее выбира­ем декартову систему координат xyz с началом координат, совпадающим с центром тяжести сечения А. Ось z направим по нормали к сечению, а оси x и y расположим в плоскости сечения. Спроектировав главный вектор сил и главный момент на координатные оси x, y, z, получаем шесть составляющих: три силы Nz , Qx , Qy и три момента Mz , Mx , My , называемых внутренними силовыми факторами в сечении бруса.

Составляющая Nz называется нормальной, или продольной силой в сечении. Силы Qx и Qy называются поперечными усилиями. Момент Mz называется крутящим моментом, а моменты Mx и My -изгибающими моментами относительно осей x и y, соответственно.

При известных внешних силах все шесть внутренних силовых

факторов в сечении определяются из шести уравнений равновесия,

которые могут быть составлены для отсеченной части.

Пусть R*, M* - результирующая сила и результирующий момент действующие на отсеченной части тела. Если тело при действии полной системы внешних сил находится в равновесном состоянии, то условия равновесия отсеченной части тела имеет вид:

(1.3)

Последние два векторные уравнения равновесия дают шесть скалярных уравнений в проекциях на декартовых осях координат:

(1.4)

которые в общем случае составляют замкнутую систему алгебраических уравнений относительно шести неизвестных внутренних усилий: Qx, Qy, Nz, Mx, My, Mz.

Следовательно, если полная система внешних сил известна, то по методу сечений, всегда можно определить все внутренние усилия действующих в произвольно взятом сечении тела. Данное положение является основополагающим обстоятельством в механике твердого деформируемого тела.

В общем случае в сечении могут иметь место все шесть силовых факторов. Однако достаточно часто на практике встречаются случаи, когда некоторые внутренние усилия отсутствуют - такие виды нагружения бруса получили специальные названия (табл. 1).

Рис. 1.3

Сопротивления, при которых в поперечном сечении бруса действует одно внутреннее усилие, условно называются простыми. При одновременном действии в сечении бруса двух и более усилий сопротивление бруса называется сложным.

В заключение заметим, что при выполнении практических расчетов, для наглядности, как правило, определяются графики функций внутренних силовых факторов относительно координатной оси, направленной вдоль продольной оси стержня. Графики изменения внутренних усилий вдоль продольной оси стержня называ­ются эпюрами.

  1. Гипотезы о свойствах материала и принцип независимости действия сил.

Принцип независимости действия сил

Схематизация свойств материала

Реальные материалы обладают разнообразными физическими свойствами и характерной для каждого из них структурой. С целью упрощения расчетов в сопротивлении материалов используются следующие допущения о свойствах материала.

1. Материал считается однородным, то есть его свойства во всех точках одинаковы.

2. Материал считается изотропным, то есть его свойства во всех направлениях одинаковы.

Изотропными являются аморфные материалы, такие как стекло и смолы. Анизотропными являются пластмассы, текстолит и т.п. Металлы являются поликристаллическими телами, состоящими из большого количества зерен, размеры которых очень малы (порядка 0,01 мм). Каждое зерно является анизотропным, но вследствие малых размеров зерен и беспорядочного их расположения металлы проявляют свойство изотропии.

3. Материал обладает свойством идеальной упругости, вследствие которой деформируемое тело полностью восстанавливает свою форму и размеры после снятия нагрузки независимо от величин нагрузок и температуры тела.

4. Форма и размеры упругого тела меняются прямо пропорционально изменению нагрузок, то есть по известному закону Гука (1660 г.).

В случае чистого однородного растяжения или сжатия призматического стержня, закон Гука имеет вид:

(1.1)

где P - растягивающая (сжимающая) осевая сила; lo, Fo - исходная длина и исходная площадь поперечного сечения стержня; E - физическая константа материала – модуль продольной упругости, различный для разных материалов; Δl - абсолютное удлинение расчетной части lo стержня. Формулу (1.1) можно представить в виде:

(1.2)

Или

(1.3)

и (1.4)

где ε = Δl/lo - относительное удлинение расчетной части стержня; σ = P/Fo - нормальное напряжение, то есть усилие, приходящееся на единицу площади Fo поперечного сечения стержня.

В формулировке данной гипотезы границы применения закона пропорциональности Гука ничем не оговариваются, хотя в действительности при некоторых нагрузках начинается существенное отклонение от закона пропорциональности.

В пределах упругости имеет место эффект Пуассона (1816 г.) – отношение относительных поперечных удлинений ε/ к относительным продольным удлинениям ε есть величина постоянная для данного материала»:

(1.5)

или

(1.6)

где μ - коэффициент Пуассона – упругая константа материалов (0<μ<0.5). Уравнение (1.6) выражает закон Гука для поперечных деформаций.

5. Материал обладает свойством сплошности, то есть способностью сплошь (без пустот) заполнять пространство, ограниченное поверхностью тела. Вследствие этого материал считается непрерывным, что позволяет использовать для определения напряжений и деформаций математический аппарат дифференциального и интегрального исчисления.

6. Упругие тела являются относительно жесткими, благодаря чему перемещения точек тела весьма малы по сравнению с размерами самого тела. Эта гипотеза служит основанием для принципа начальных размеров.

При действии на относительно жесткое тело несколько сил, результат действия одной части этих сил не зависит от результата действия остальных сил.

Следствие 1. Результат действия на тело нескольких сил равен сумме результатов отдельного действия каждой силы.

Следствие 2. Результат действия на тело нескольких сил не зависит от последовательности приложения этих сил.

  1. Типы расчетов элементов конструкций. Допускаемые напряжения и перемещения. Запас прочности, жесткости и устойчивости.

НАПРЯЖЕНИЯ И РАСЧЕТ НА ПРОЧНОСТЬ

При центральном растяжении (сжатии) в поперечном сечении возникают нормальные напряжения:

где N - продольная сила;

F - площадь поперечного сечения.

Эти напряжения распределены по поперечному сечению равномерно (рис 2.3).

Рис. 2.3

Проверка прочности центрально растянутого стержня выполняется по условию:

ОСНОВНОЕ УСЛОВИЕ ПРОЧНОСТИ. ДОПУСКАЕМЫЕ НАПРЯЖЕНИЯ. УСЛОВИЕ ЖЕСТКОСТИ

Ответы на вопросы о прочности может дать оценка прочности конструкции, которая сводится к сравнению расчетных напряжений с допускаемыми:

Это и есть основные условия прочности.

Расчетное напряжение - наибольшее по абсолютной величине сжимающее или стягивающее напряжение, возникающее в опасном сечении конструкции.

Допускаемые напряжения.

Допускаемое напряжение определяется по формуле:

Механические характеристики материалов - величины предела текучести и предела прочности определяются опытным путем. Автоматически вычерчивается график "сила - продольная деформация" (Р - l) Этот график переводится в диаграмму напряжение - относительная деформация где

(Здесь F0 и l0 - первоначальная площадь поперечного сечения и длина стандартного образца) (рис. 1.22).

- предел пропорциональности; наибольшее напряжение, при котором еще справедлив закон Гука;

- предеп текучести (деформации растут без увеличения нагрузки);

Рис. 1.23 - предел прочности ипи временное сопротивпение разрыву (рис.1 23). - предел прочности при растяжении, - предеп прочности при сжатии, причем: В спучае пластичного материапа в качестве предельного напряжения - принимается предеп текучести при растяжении , соответствующий началу текучести материала, а в случае хрупкого материала - предел прочности при растяжении или сжатии, предшествующий разрыву образца. В знаменателе стоит нормативный (требуемый) коэффициент запаса прочности по отношению соответственно к пределу текучести и пределу прочности n. Он представляет собой величину, большую единицы, зависящую от класса конструкции (капитальная, временная и т.п.), срока ее эксплуатации, нагрузки (статическая, циклическая и т.п.), возможной неоднородности изготовления материала и от вида деформации (растяжение, сжатие, изгиб и т.п.). Нормативный коэффициент запаса прочности регламентируется для строительных конструкций СН и Пами, для машиностроительных - внутризаводскими нормами. В большинстве случаев он принимается равным для пластичных материалов nT = 1,5 + 2,5, для хрупких nB = 2,5 + 5. В случае, когда решающими для прочности конструкции являются не нормальные, а касательные напряжения (например, при кручении бруса круглого поперечного сечения), условие прочности имеет вид: - расчетное касательное напряжение. - допускаемое касательное напряжение, определяемое по формуле: В случае пластичного материала в качестве предельного принимают предел текучести при сдвиге в случае хрупкого материала - предел прочности . В большинстве случаев допускаемые напряжения при кручении принимают в зависимости от допускаемых напряжений при растяжении того же материала. Например, для стали = 0,5 [], для чугуна . В практике инженерных расчетов считают возможным допускать перенапряжение материала до 3 - 5%. Условие жесткости по логике строится так же, как и условие прочности. Однако, ограничения накладываются не на напряжения, а на изменение формы стержня (вала, балки), т.е. деформации. Для разных видов нагружения условия жесткости имеютвид: при растяжении (сжатии) при кручении где - угол закручивания, при изгибе где - угол поворота, у - прогиб.

Соседние файлы в предмете Сопротивление материалов