 
        
        ИДЗ 2.1 Рябушко пример решения
.pdf 
Наш сайт: Fizmathim.ru
Группа ВКонтакте https://vk.com/fizmathim_resh
Перейти на Готовые решения ИДЗ Рябушко (по вариантам)
Решение задач по высшей математике на заказ
ИДЗ 2.1 – Вариант 0
1. Даны векторы a = αm+βn и b = γm+δn, где |m| = k; |n| = l; (m,^n) = φ. Найти а) (λa+μb)∙(νa+τb); б) прв(νa+τb); в) cos(a,^τb)
| 1.0 α = 3, β = –2, γ = 4, δ = 5, | 
 | k = 3, l = 2, φ = 5π/3, λ = 3, μ = 2, ν = 1, τ = 1 | ||||||||
| 
 | m | 
 | 3 , | 
 | n | 
 | 2 | 
 | 
 | 5 / 3 | 
| 
 | 
 | 
 | 
 | |||||||
| 
 | 
 | 
 | 
 | , m, n | 
 | |||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| a 3m 2n | b 4m 5n | |||||||||
а) 3a 2b a b
Подставляем начальные данные, вычисляем
3a 3 3m 2n 9m 6n
2b 2 4m 5n 8m 10n
3a 2b 9m 8m 6n 10n 17m 4n
a3m 2n
b4m 5n
a b 3m 2n 4m 5n 7m 3n
В итоге:
| 3a 2b a b 17m 4n 7m 3n 119m | 2 | 79 | 
 | m | 
 | n | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 12n | 2 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | cos m, n | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 119 32 | 79 3 2 0,5 12 22 | 1071 237 48 1356 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
| б) пр b a b | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||
| Пусть | c a b 7m 3n | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||
| Тогда | пр | 
 | c | c | 
 | 
 | 
 | b | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||
| b | 
 | 
 | b | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||
| Найдем значения c b и | b | : | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||
| c b 7m | 3n 4m | 5n 28m | 2 | 47 | 
 | m | 
 | 
 | 
 | n | 
 | 
 | 
 | 
 | 2 | 28 | 3 | 2 | 47 | 3 2 | 0,5 15 2 | 2 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | cos m, n 15n | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 252 141 60 453 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| 
 | b | 
 | b | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 4m 5n | 2 | 16m | 2 | 40 | 
 | m | 
 | n | 
 | 
 | 
 | 2 | 
 | 
 | 16 | 3 | 2 | 40 | 3 2 0,5 25 2 | 2 | 
 | 
 | |||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | cos m, n 25n | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||
| 
 | 144 120 100 | 364 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||
| Окончательно получаем: | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||
| пр | 
 | 
 | a b | 453 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||
| b | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||
| 364 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| в) | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| сos a, b | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| a 3m 2n | 
 | 
 | 
 | 
 | 
 | b 4m 5n | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||
Так как
d a 3m 2n e b 4m 5n
 
Наш сайт: Fizmathim.ru
Группа ВКонтакте https://vk.com/fizmathim_resh
Перейти на Готовые решения ИДЗ Рябушко (по вариантам)
Решение задач по высшей математике на заказ
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | d e | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| Тогда сos d, e | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | d | 
 | e | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| Находим d e | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| d e 3m 2n | 4m 5n 12m | 2 | 
 | 7 | 
 | m | 
 | n | 
 | 
 | 
 | 
 | 
 | 10n | 2 | 12 3 | 2 | 7 3 2 | 0,5 10 2 | 2 | 108 21 | 40 89 | ||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | cos m, n | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 
 | d | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 9m | 12 | m | n | 
 | 
 | 
 | 
 | 
 | 
 | 4n | 
 | 
 | 9 3 | 12 3 2 0,5 4 | 2 | 
 | 
 | 81 36 16 | 
 | 61 7,81 | |||||||||||||||||||||||||||||||
| 
 | 3m 2n | 
 | 
 | 
 | 
 | cos m, n | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 
 | e | 
 | 
 | 4m 5n | 2 | 
 | 
 | 
 | 16m | 2 | 40 | 
 | m | 
 | n | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 16 | 3 | 2 | 40 3 2 0,5 | 25 2 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | cos m, n | 25n | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||

 144 120 100
144 120 100 
 364 19,08
364 19,08
Врезультате имеем:
| 
 | 
 | 
 | 
 | 89 | 
 | 89 | 0,597 | |||
| сos a, b | 
 | 
 | 
 | 
 | ||||||
| 7,81 | 19,08 | 149 | ||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | |||||
 
Наш сайт: Fizmathim.ru
Группа ВКонтакте https://vk.com/fizmathim_resh
Перейти на Готовые решения ИДЗ Рябушко (по вариантам)
Решение задач по высшей математике на заказ
2. По координатам точек А, В и С для указанных векторов найти: а) модуль вектора а; б) скалярное произведение векторов а и b; в) проекцию вектора c на вектор d; г) координаты точки М, делящей отрезок l в отношении α : β
2.0 A(5, 4, 4), B(2, 4, 6), C(5, –2, 6) a = –2 BC + 4 BA , b =c= CA , d = BA , l=BC, α = 3, β = 1
а) модуль вектора а
Последовательно находим
BA 5 2; 4 4; 4 6 3; 0; 2 ; 4BA 12; 0; 8
BC 5 2; 2 4; 6 6 3; 6; 0
2BC 6; 12; 0
2BC 4BA 6 12; 12 0; 0 ( 8) 6; 12; 8
Модуль вектора определяем выражением
a 
 x12 y12 z12
x12 y12 z12
Тогда Модуль вектора а:
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 62 122 ( 8)2 | 
 | 
 | 
 | 
 | 
| a | 
 | 2BC 4BA | 
 | 
 | 36 144 64 244 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
б) скалярное произведение векторов а и b
a2BC 4BA 6; 12; 8
bCA 0; 6; 2
Скалярное произведение двух векторов находим по формуле
a b x1x2 y1y2 z1z2
Тогда
a b 6 0 12 6 ( 8) ( 2) 0 72 16 88
в) проекцию вектора c на вектор d;
| Так как пр d c | c d | c | 
 | 0; 6; 2 | |||
| CA | |||||||
| 
 | d | 
 | |||||
| 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
d BA 3; 0; 2
c d 0 3 6 0 ( 2) ( 2) 0 4 4 d 
 32 02 ( 2)2
32 02 ( 2)2 
 9 4
9 4 
 13
13
| 
 | 
 | 
 | 
 | 
 | 4 | 
 | ||
| пр | 
 | CA | ||||||
| 
 | 
 | 
 | 
 | |||||
| BA | 
 | 
 | 
 | |||||
| 13 | ||||||||
| 
 | 
 | 
 | 
 | 
 | ||||
г) координаты точки М, делящей отрезок l в отношении 3 :1
B(2, 4, 6), C(5, –2, 6)
| Имеем: 3 | 
 | r | 
 | rB rC | . Следовательно, | 
 | 
 | 
 | |||||||||||
| 
 | 
 | 
 | 
 | 
 | |||||||||||||||
| 
 | 
 | 
 | 
 | 
 | M | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| x M | 
 | 2 3 5 | 
 | 
 | 17 | 
 | 
 | 
 | yM | 
 | 4 3 ( 2) | 
 | 2 | 
 | 1 | ||||
| 
 | 1 3 | 4 | 
 | 
 | 
 | 
 | 4 | 2 | |||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 3 | 
 | 
 | 
 | |||||||
| zM | 6 3 6 | 
 | 24 | 6 | 
 | 
 | 17 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | 
 | 
 | M | 
 | 
 | ; | 
 | 
 | ; 6 | 
 | 
 | 
 | |||||
| 
 | 1 3 | 4 | 
 | 4 | 2 | 
 | 
 | 
 | |||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
 
Наш сайт: Fizmathim.ru
Группа ВКонтакте https://vk.com/fizmathim_resh
Перейти на Готовые решения ИДЗ Рябушко (по вариантам)
Решение задач по высшей математике на заказ
3.Доказать, что векторы a,b,c образуют базис, и найти координаты вектора d в этом базисе.
3.0a(2, –1, 2); b(1, 1, 2); c(4, 1, 4); d(8, 11, 22)
Вычисляем по правилу треугольника:
| a | 11 | a12 | a13 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | a11a 22a 33 | a12a 23a 31 a 21a 32a13 a13a 22a 31 a12a 21a 33 a 23a 32a11 | 
| a | 21 | a 22 | a 23 | 
 | ||
| 
 | 
 | a 32 | a 33 | 
 | 
 | 
 | 
| a 31 | 
 | 
 | 
 | |||
| Тогда | 
 | 
 | 
 | |
| 
 | 1 | 2 | 
 | |
| 
 | 2 | 
 | ||
| abc | 1 | 1 | 2 | 2 1 4 ( 1) 2 4 2 1 1 2 1 4 2 2 1 ( 1) 1 4 8 8 2 8 4 4 6 0 | 
| 
 | 4 | 1 | 4 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
Следовательно, векторы a,b,c образуют базис, и вектор d линейно выражается через базисные векторы: d a b c
или в координатной форме
2 4 811 2 2 4 22
Решаем полученную систему по формулам Крамера. Находим:
| 
 | 2 | 1 | 4 | 
 | 
| 
 | 1 1 | 1 | 8 2 8 8 4 4 6 | |
| 
 | 2 | 2 | 4 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
| Найдем | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | 
 | 
 | 1 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 
 | 
 | 
 | 
 | 8 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| 
 | 11 | 1 | 1 | 
 | 32 22 88 88 16 44 6 | ||||||||||
| 
 | 
 | 
 | 
 | 22 | 2 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 
 | 
 | 
 | 
 | 8 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| 
 | 1 | 11 | 1 | 88 16 88 88 44 32 84 | |||||||||||
| 
 | 
 | 
 | 2 | 
 | 22 | 4 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 
 | 
 | 
 | 1 | 8 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| 
 | 1 | 1 | 11 | 44 22 16 16 44 22 12 | |||||||||||
| 
 | 
 | 2 | 
 | 2 | 22 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 
 | 
 | ; | ; | 
 | 
 | 
 | 
 | 
 | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 6 | 1; | 
 | 84 | 14; | 
 | 12 | 2 | |||||||
| 6 | 6 | 
 | |||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 6 | ||||||
| Поэтому d 1; | 14; 2 a 14b 2c | ||||||||||||||
