
- •31 Оглавление
- •Атом. Представление о строении атома. Электроны, протоны, нейтроны
- •Представление о современной квантово-механической модели атома. Характеристика состояния электронов в атоме с помощью набора квантовых чисел, их трактовка и допустимые значения
- •Последовательность заполнения энергетических уровней и подуровней электронами в многоэлектронных атомах. Принцип Паули. Правило Гунда. Принцип минимума энергии.
- •Энергия ионизации и энергия сродства к электрону. Характер их изменения по периодам и группам периодической системы д.И.Менделеева. Металлы и неметаллы.
- •Электроотрицательность химических элементов. Характер изменения электроотрицательности по периодам и группам периодической системы д.И.Менделеева. Понятие степени окисления.
- •Основные типы химической связи. Ковалентная связь. Основные положения метода валентных связей. Общее представление о методе молекулярных орбиталей.
- •Два механизма образования ковалентной связи: обычный и донорно-акцепторный.
- •Ионная связь как предельный случай поляризации ковалентной связи. Электростатическое взаимодействие ионов.
- •11.Металлические связи. Металлические связи как предельный случай делокализации валентных электронных орбиталей. Кристаллические решетки металлов.
- •12. Межмолекулярные связи. Взаимодействия Ван-дер-Ваальса – дисперсионное, диполь-дипольное, индуктивное). Водородная связь.
- •13. Основные классы неорганических соединений. Оксиды металлов и неметаллов. Номенклатура этих соединений. Химические свойства основных, кислотных и амфотерных оксидов.
- •14. Основания.Номенклатура оснований. Химические свойства оснований. Амфотерные основания, реакции их взаимодействия с кислотами и щелочами.
- •15. Кислоты.Бескислородные и кислородные кислоты. Номенклатура (название кислот). Химические свойства кислот.
- •16. Соли как продукты взаимодействия кислот и оснований. Типы солей: средние (нормальные), кислые, основные, оксосоли, двойные, комплексные соли. Номенклатура солей. Химические свойства солей.
- •17. Бинарные соединения металлов и неметаллов. Степени окисления элементов в них. Номенклатура бинарных соединений.
- •18. Типы химических реакций: простые и сложные, гомогенные и гетерогенные, обратимые и необратимые.
- •20. Основные понятия химической кинетики. Скорость химической реакции. Факторы, влияющие на скорость реакции в гомогенных и гетерогенных процессах.
- •22. Влияние температуры на скорость химической реакции. Энергия активации.
- •23. Химическое равновесие. Константа равновесия, ее зависимость от температуры. Возможность смещения равновесия химической реакции. Принцип Ле-Шателье.
- •1)Кислота – сильный электролит.
- •36. А) Стандартный водородный электрод. Кислородный электрод.
- •37. Уравнение Нернста для расчета электродных потенциалов электродных систем различных типов. Уравнение Нернста для водородного и кислородного электродов
- •3) Металлы, стоящие в ряду активности после водорода, не реагируют с водой.
- •I – величина тока
- •49. Кислотно-основной метод титрования.Расчеты по закону эквивалентов. Методика титрования. Мерная посуда в титриметрическом методе
17. Бинарные соединения металлов и неметаллов. Степени окисления элементов в них. Номенклатура бинарных соединений.
Бинарные соединения — это собирательная группа веществ, которые имеют различное химическое строение, но состоят из двух видов атомов.
Названия бинарных веществ, образуются добавлением к названию более электроотрицательного элемента суффикса -ид.
1. Взаимодействие с водой (гидролиз)
Многие бинарные соединения гидролизуются водой, например гидриды металлов, фосфин, аммиак или хлорид алюминия. В результате взаимодействия гидридов металлов, а также гидрида азота и гидрида фосфора, с водой образуются основания.
MeHn+nH2O⟶Me(OH)n+nH2↑MeHn+nH2O⟶Me(OH)n+nH2↑
PH3+H2O⟶PH4(OH)PH3+H2O⟶PH4(OH)
Бинарные соединения, представляющие собой соли бескислородных кислот (сульфиды, галогениды переходных металлов) также гидролизуются водой с образованием нерастворимых оснований или соответствующих слабых кислот:
AlCl3+3H2O⟶Al(OH)3↓+3HClAlCl3+3H2O⟶Al(OH)3↓+3HCl
Na2S+H2O⟶H2S↑+NaOHNa2S+H2O⟶H2S↑+NaOH
При взаимодействии с водой газообразных гидридов более электроотрицательных элементов (HCL,H2SHCL,H2S) образуются соответствующие кислоты - соляная, сероводородная. бромоводородная.
2. Взаимодействие с кислородом (окисление)
На воздухе горят, то есть окисляются с выделением тепла, летучие водородные соединения:
4NH3+3О2⟶2N2+6H2O+Q4NH3+3О2⟶2N2+6H2O+Q
H2S+O2⟶SO2↑+H2O+QH2S+O2⟶SO2↑+H2O+Q
Галогеноводороды на воздухе не горят, но могут окисляться кислородом над катализатором:
4HCl+O2−→−−CuCl22H2O+2Cl2↑4HCl+O2→CuCl22H2O+2Cl2↑
Сульфиды переходных металлов, представляющие собой соли сероводородной кислоты, окисляются кислородом воздуха при нагревании. Такая реакция (обжиг пирита) лежит, например, в основе производства стали и, одновременно, синтеза серной кислоты:
2FeS2+11O2⟶4SO2+Fe2O32FeS2+11O2⟶4SO2+Fe2O3
Все указанные реакции являются окислительно-восстановительными.
18. Типы химических реакций: простые и сложные, гомогенные и гетерогенные, обратимые и необратимые.
Химическая реакция, протекающая в пределах одной фазы, называется гомогенной химической реакцией.
Химическая реакция, протекающая на границе раздела фаз, называется гетерогенной химической реакцией.
Для простых реакций, протекающих в одну стадию, когда стехиометрическое уравнение отражает истинных ход процесса, показатели степени в кинетическом уравнении скорости реакции представляют собой стехиометрические коэффициенты.
В случае же сложных реакций, протекающих через несколько стадий, когда общее стехиометрическое уравнение не отражает действительного хода реакции, показатели степени в уравнении скорости реакции не будут соответствовать стехиометрическим коэффициентам.
Химические реакции, в результате которых исходные вещества практически полностью превращаются в конечные продукты, называются необратимыми.
Химические реакции, которые протекают одновременно а двух противоположных направлениях — прямом и обратном — называются обратимыми.
19. Реакции, отличающиеся по тепловому эффекту – эндо- и экзотермические. Превращения энергии при химических реакциях. Первый закон термодинамики. Функции состояния: внутренняя энергия, энтальпия, энтропия, энергия Гиббса.
Экзотермическая реакция— химическая реакция, сопровождающаяся выделением теплоты.
Эндотермическая реакция- химическая реакция, при которой происходит поглощение теплоты.
Выделение или поглощение энергии происходит в виде теплоты. Это позволяет судить о наличии в веществах определенного количества некоторой энергии (внутренней энергией реакции).
При химических реакциях происходит освобождение части энергии, содержащейся в веществах, это носит название теплового эффекта реакции. по которому можно судить об изменении количества внутренней энергии вещества.
Во время химических реакций происходит взаимное превращение энергий – внутренней энергии веществ в тепловую, лучистую, электрическую и механическую, и наоборот.
Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:
ΔU = A + Q,
где ΔU — изменение внутренней энергии, A — работа внешних сил, Q — количество теплоты, переданной системе.
Из (ΔU = A + Q) следует закон сохранения внутренней энергии. Если систему изолировать от внешних воздействий, то A = 0 и Q = 0, а следовательно, и ΔU = 0.
При любых процессах, происходящих в изолированной системе, ее внутренняя энергия остается постоянной.
Если работу совершает система, а не внешние силы, то уравнение (ΔU = A + Q) записывается в виде:
где A' — работа, совершаемая системой (A' = -A).
Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами.
Функцией состоянияназывается такая переменная характеристика системы, которая не зависит от предыстории системы и изменение которой при переходе системы из одного состояния в другое не зависит от того, каким образом было произведено это изменение.
Внутренняя энергияхарактеризует общий запас системы (все виды энергии системы)
Энтропия – есть мера неупорядоченности системы. Энтпропия вводится как функция состояния, изменение которой определяется отношением количества теплоты, полученное или отданное системой при t – T.
Энтальпией образования сложного вещества из простых веществ называется тепловой эффект реакции образования данного вещества из простых веществ в стандартных состояниях, отнесенный к 1 молю получающегося вещества
Энергия Гиббса - это величина, показывающая изменение энергии в ходе химической реакции.