Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Books for lectures / Gompert Signal Transd / Ch14 Adh in diff mainly Wnt.pdf
Скачиваний:
39
Добавлен:
30.03.2016
Размер:
2.29 Mб
Скачать

Signal Transduction

Abbreviation

Full name/description

SwissProt

Other names/OMIM

 

 

entry

 

 

 

 

 

LRP6

LDL-receptor related protein-6

O75581

 

 

 

 

 

mDia1

mouse Diaphanous homologue-1

O08808

 

 

 

 

 

Pan

pangolin (Drosophila)

P91943

TCF

 

 

 

 

PDZ

domain found in PSD95, DlgA and

 

 

 

ZO-1

 

 

 

 

 

 

PKC

protein kinase C-iota

P41743

atypical protein kinase C λ

 

 

 

 

plakoglobin

junctional plaque protein

P14923

desmoplakin-3

 

 

 

 

PSD95

post-synaptic density protein-95

P78352

disc large homolog-4

 

 

 

 

Pygo1

pygopus homologue-1

Q9Y3Y4

 

 

 

 

 

ROCK

Rho-associated coiled-coil

Q13464

 

 

containing protein kinase-1

 

 

 

 

 

 

SCF

ubiquitin protein E3-ligase complex

 

 

 

comprising Skp1, cullin-1 and

 

 

 

F-box protein

 

 

 

 

 

 

Sgg

shaggy (rough-haired) (Drosophila)

P18431

zeste-white (GSK3 kinase)

 

 

 

 

Smo

smoothened homologue

Q99835

Gx protein

 

 

 

 

Snail

 

O95863

SNAI1, SnaH

 

 

 

 

TAF1

TBP-associated factor-1

Q15573

RNA polymerase subunit A

 

 

 

 

TBP

TATA-box binding protein

P20226

TFIID TBP subunit

 

 

 

 

TCF-4

T cell specific transcription factor-4

Q9NQB0

TCF7L2, MIM: 602228

 

 

 

 

TLE-1

transducin-like enhancer protein-1

Q04724

 

 

 

 

 

Wnt-3a

wingless/int-3a

P56704

 

 

 

 

 

ZONAB

ZO-1 associated nucleic acid binding

Q9N1Q2

DbpA (DNA binding protein-A)

 

protein

 

 

 

 

 

 

References

1. Fialka I, Schwarz H, Reichmann E, Oft M, Busslinger M, Beug H. The estrogen-dependent c-JunER protein causes a reversible loss of mammary epithelial cell polarity involving a destabilization of adherens junctions. J Cell Biol. 1996;132:1115–1132.

2. Eger A, Stockinger A, Schaffhauser B, Beug H, Foisner R. Epithelial mesenchymal transition by c-Fos estrogen receptor activation involves nuclear translocation of -catenin and upregulation of -catenin/

442

Adhesion molecules in the regulation of cell differentiation: Mainly about Wnt

lymphoid enhancer binding factor-1 transcriptional activity. J Cell Biol. 2000;148:173–188.

3. Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol. 2006;172:973–981.

4. Hay ED. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn. 2005;233:706–720.

5. Huber MA, Kraut N, Beug H. Molecular requirements for epithelialmesenchymal transition during tumor progression. Curr Opin Cell Biol. 2005;17:548–558.

6. Berx G, van Roy F. The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res. 2001;3:289–293.

7. Gottardi CJ, Wong E, Gumbiner BM. E-cadherin suppresses cellular transformation by inhibiting -catenin signaling in an adhesionindependent manner. J Cell Biol. 2001;153:1049–1060.

8. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434:843–850.

9. Nelson WJ, Nusse R. Convergence of Wnt, -catenin, and cadherin pathways. Science. 2004;303:1483–1487.

10.Sharma RP, Chopra VL. Effect of the Wingless (wg1) mutation on wing and haltere development in Drosophila melanogaster. Dev Biol. 1976;48: 461–465.

11.Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980;287:795–801.

12.Gerhart J. Signaling pathways in development. Teratology. 1999;60: 226–239.

13.Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982;31:99–109.

14.Baker NE. Molecular cloning of sequences from wingless, a segment polarity gene in Drosophila: the spatial distribution of a transcript in embryos. EMBO J. 1987;6:1765–1773.

15.Cabrera CV, Alonso MC, Johnston P, Phillips RG, Lawrence PA. Phenocopies induced with antisense RNA identify the wingless gene. Cell. 1987;50: 659–663.

16.Rijsewijk F, Schuermann M, Wagenaar E, Parren P, Weigel D, Nusse R. The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell. 1987;50:649–657.

17.Nusse R, Brown A, Papkoff J, et al. A new nomenclature for int-1 and related genes: the Wnt gene family. Cell. 1991;64:231.

18.Thomas KR, Musci TS, Neumann PE, Capecchi MR. Swaying is a mutant allele of the proto-oncogene Wnt-1. Cell. 1991;67:969–976.

19.Moon RT, Kohn AD, De Ferrari GV, Kaykas A. WNT and -catenin signalling: diseases and therapies. Nat Rev Genet. 2004;5:691–701.

443

Signal Transduction

20.Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature. 2003;423:448–452.

21.Panakova D, Sprong H, Marois E, Thiele C, Eaton S. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature. 2005;435: 58–65.

22.Siegfried E, Chou TB, Perrimon N. wingless signaling acts through zestewhite 3, the Drosophila homolog of glycogen synthase kinase-3, to regulate engrailed and establish cell fate. Cell. 1992;24:1167–1179.

23.Noordermeer J, Klingensmith J, Perrimon N, Nusse R. dishevelled and armadillo act in the wingless signalling pathway in Drosophila. Nature. 1994;367:80–83.

24.Willert K, Nusse R. -Catenin: a key mediator of Wnt signalling. Curr Opin Genet Dev. 1998;8:95–102.

25.Klingensmith J, Nusse R. Signaling by wingless in Drosophila. Dev Biol. 1994;166:396–414.

26.Martinez-Arias A. Wnts as morphogens? The view from the wing of

Drosophila. Nat Rev Mol Cell Biol. 2003;4:321–325.

27.Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

28.Wong LL, Adler PN. Tissue polarity genes of Drosophila regulate the subcellular location for prehair initiation in pupal wing cells. J Cell Biol. 1993;123:209–221.

29.Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of -catenin-independent Wnt signalling. Dev Cell. 2003;5:367–377.

30.Peifer M, Wieschaus E. The segment polarity gene armadillo encodes a functionally modular protein that is the Drosophila homolog of human plakoglobin. Cell. 1990;63:1167–1176.

31.Peifer M, McCrea PD, Green KJ, Wieschaus E, Gumbiner BM. The vertebrate adhesive junction proteins -catenin and plakoglobin and the Drosophila segment polarity gene armadillo form a multigene family with properties similar. J Cell Biol. 1992;118:681–691.

32.Brunner E, Peter O, Schweizer L, Basler K. Pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature. 1997;385:829–833.

33.Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W. Functional interaction of -catenin with the transcription factor LEF-1. Nature. 1996;382:638–642.

34.Riese J, Yu X, Munnerlyn A, Eresh S, Hsu SC, Grosschedl R, Bienz M. LEF-1, a nuclear factor coordinating signaling inputs from wingless and decapentaplegic. Cell. 1997;88:777–787.

35.van de Wetering M, Cavallo R, Dooijes D, et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell. 1997;88:789–799.

444

Adhesion molecules in the regulation of cell differentiation: Mainly about Wnt

36.Clevers H, van de Wetering M. TCF/LEF factor earn their wings. Trends Genet. 1997;13:485–489.

37.van de Wetering M, Oosterwegel M, Dooijes D, Clevers H. Identification and cloning of TCF-1, a T lymphocyte-specific transcription factor containing a sequence-specific HMG box. EMBO J. 1991;10:123–132.

38.Travis A, Amsterdam A, Belanger C, Grosschedl R. LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor enhancer function. Genes Dev. 1991;5:880–894.

39.Bienz M. TCF: transcriptional activator or repressor? Curr Opin Cell Biol 1998;10:366–372.

40.Cavallo RA, Cox RT, Moline MM, et al. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature. 1998;395:604–608.

41.Daniels DL, Weis WI. -catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol. 2005;12:364–371.

42.Ropero S, Fraga MF, Ballestar E, et al. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat Genet. 2006;38:566–569.

43.Sokol S, Christian JL, Moon RT, Melton DA. Injected Wnt RNA induces a complete body axis in Xenopus embryos. Cell. 1991;67:741–752.

44.Moon RT, Bowerman B, Boutros M, Perrimon N. The promise and

perils of Wnt signaling through -catenin. Science. 2002;296:1644–1646.

45.Brantjes H, Roose J, van de Wetering M, Clevers H. All Tcf HMG box transcription factors interact with Groucho-related co-repressors. Nucleic Acids Res. 2001;29:1410–1419.

46.Simcha I, Shtutman M, Salomon D, et al. Differential nuclear translocation and transactivation potential of -catenin and plakoglobin. J Cell Biol. 1998;141:1433–1448.

47.Lindsley DL, Grell EH. Genetic variations of Drosophila melanogaster

Publication 627. Washington DC: Carnegie Institute; 1968.

48.Lynch HT, de la Chapelle A. Hereditary colorectal cancer. N Engl J Med. 2003;348:919–932.

49.Groden J, Thliveris A, Samowitz W, et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 1991;66:589–600.

50.Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14:1837–1851.

51.Hinck L, Nelson WJ, Papkoff J. Wnt-1 modulates cell–cell adhesion in mammalian cells by stabilizing -catenin binding to the cell adhesion protein cadherin. J Cell Biol. 1994;124:729–741.

52.Ahmed Y, Hayashi S, Levine A, Wieschaus E. Regulation of armadillo by a Drosophila APC inhibits neuronal apoptosis during retinal development. Cell. 1998;93:1171–1182.

53.Munemitsu S, Albert I, Souza B, Rubinfeld B, Polakis P. Regulation of intracellular -catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci U S A. 1995;92:3046–3050.

445

Signal Transduction

54.Sansom OJ, Reed KR, Hayes AJ, et al. Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev. 2004;18:1385–1390.

55.Orford K, Orford CC, Byers SW. Exogenous expression of -catenin regulates contact inhibition. anchorage-independent growth, anoikis, and radiation-induced cell cycle arrest, J Cell Biol. 1999;146:855–868.

56.Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P. Binding of GSK3 to the APC- -catenin complex and regulation of complex assembly. Science. 1996;272:1023–1026.

57.Huber AH, Stewart DB, Laurents DV, Nelson WJ, Weis WI. The cadherin cytoplasmic domain is unstructured in the absence of -catenin.

A possible mechanism for regulating cadherin turnover. J Biol Chem. 2001;276:12301–12309.

58.Su LK, Vogelstein B, Kinzler KW. Association of the APC tumor suppressor protein with catenins. Science. 1993;262:1734–1737.

59.Cadigan KM, Liu YI. Wnt signaling: complexity at the surface. J Cell Sci. 2005;119:395–402.

60.Davidson G, Wu W, Shen J, et al. Casein kinase 1 couples Wnt receptor activation to cytoplasmic signal transduction. Nature. 2005;438:867–872.

61.Huang H, Tamai K, Doble B, et al. A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature. 2005;438:873–877.

62.Gao Y, Wang HY. Casein kinase 2 is activated and essential for Wnt/-catenin signalling. J Biol Chem. 2006;281:18394–18400.

63.Tsukiyama T. The in vivo functions of ATP-dependent chromatinremodelling factors. Nat Rev Mol Cell Biol. 2002;3:422–429.

64.Hoffmans R, Stadeli R, Basler K. Pygopus and legless provide essential transcriptional co-activator functions to armadillo/ -catenin. Curr Biol. 2005;15:1207–1211.

65.Tolwinski NS, Wieschaus E. A nuclear escort for -catenin. Nat Cell Biol. 2004;6:579–580.

66.Townsley FM, Cliffe A, Bienz M. Pygopus and Legless target Armadillo/-catenin to the nucleus to enable its transcriptional co-activator function. Nat Cell Biol. 2004;6:626–633.

67.Burnett G, Kennedy EP. The enzymatic phosphoryation of proteins. J Biol Chem. 1954;211:969–980.

68.Onorato TM, Chakraborty S, Haldar D. Phosphorylation of rat liver mitochondrial glycerol-3-phosphate acyltransferase by casein kinase 2. J Biol Chem. 2005;280:19527–19534.

69.Knippschild U, Gocht A, Wolff S, Huber N, Lohler J, Stoter M. The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal. 2005;17:675–689.

70.Canton DA, Litchfield DW. The shape of things to come: an emerging role for protein kinase CK2 in the regulation of cell morphology and the cytoskeleton. Cell Signal. 2006;18:267–275.

446

Adhesion molecules in the regulation of cell differentiation: Mainly about Wnt

71.Mao B, Niehrs C. Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling. Gene. 2003;302:179–183.

72.Itasaki N, Jones CM, Mercurio S, et al. Wise, a context-dependent activator and inhibitor of Wnt signalling. Development. 2003;130:4295–4305.

73.Hsieh JC, Kodjabachian L, Rebbert ML, et al. A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature. 1999;398:431–436.

74.Finch PW, He X, Kelley MJ, et al. Purification and molecular cloning of a secreted, Frizzled-related antagonist of Wnt action. Proc Natl Acad Sci U S A. 1997;94:6770–6775.

75.Jia J, Tong C, Wang B, Luo L, Jiang J. Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature. 2004;432:1045–1050.

76.Apionishev S, Katanayeva NM, Marks SA, Kalderon D, Tomlinson A. Drosophila Smoothened phosphorylation sites essential for Hedgehog signal transduction. Nat Cell Biol. 2004;7:86–92.

77.Christofori G. Changing neighbours, changing behaviour: cell adhesion molecule-mediated signalling during tumour progression. EMBO J. 2003;22:2318–2323.

78.Pagliarini RA, Xu T. A genetic screen in Drosophila for metastatic behavior. Science. 2003;302:1227–1231.

79.Lilien J, Balsamo J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of -catenin. Curr Opin Cell Biol. 2005;17:459–465.

80.Cano A, Perez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.

81.Sancho E, Batlle E, Clevers H. Signaling pathways in intestinal development and cancer. Annu Rev Cell Dev Biol. 2004;20:695–723.

82.Booth C, Potten CS. Gut instincts: thoughts on intestinal epithelial stem cells. J Clin Invest. 2000;105:1493–1499.

83.van de Wetering M, Sancho E, Verweij C, et al. The -catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell. 2002;111:241–250.

84.Wilkinson DG. Multiple roles of EPH receptors and ephrins in neural development. Nat Rev Neurosci. 2001;2:156–164.

85.Beghtel H, Henderson JT, van den Born MM, et al. -catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell. 2002;111:251–263.

86.Korinek V, Barker N, Moerer P, et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet. 1998;19:379–383.

87.Pinto D, Gregorieff A, Begthel H, Clevers H. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev. 2003;17:1709–1713.

447

Signal Transduction

88. Kuhnert F, Davis CR, Wang HT, et al. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci U S A. 2006;101:266–271.

89. Alonso L, Fuchs E. Stem cells in the skin: waste not, Wnt not. Genes Dev. 2003;17:1189–1200.

90. Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in selfrenewal of haematopoietic stem cells. Nature. 2003;423:409–414.

91. Caussinus E, Gonzalez C. Induction of tumor growth by altered

stem-cell asymmetric division in Drosophila melanogaster. Nat Genet. 2005;37:1125–1129.

92. Betschinger J, Mechtler K, Knoblich JA. Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell. 2006;124:1241–1253.

93. Gho M, Schweisguth F. Frizzled signalling controls orientation of asymmetric sense organ precursor cell divisions in Drosophila. Nature. 1998;393:178–181.

94. Gong Y, Mo C, Fraser SE. Planar cell polarity signalling controls cell division orientation during zebrafish gastrulation. Nature. 2004;430: 689–693.

95. Ahringer J. Control of cell polarity and mitotic spindle positioning in animal cells. Curr Opin Cell Biol. 2003;15:73–81.

96. Habas R, Kato Y, He X. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell. 2001;107:843–854.

97. Hall A, Nobes CD. Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Phil Trans R Soc Lond B Biol Sci. 2000;355:965–970.

98. Narumiya S, Yasuda S. Rho GTPases in animal cell mitosis. Curr Opin Cell Biol. 2006;18:199–205.

99. Cowan CR, Hyman AA. Asymmetric cell division in C. elegans: cortical polarity and spindle positioning. Annu Rev Cell Dev Biol. 2004;20: 427–453.

100.Reilein A, Nelson WJ. APC is a component of an organizing template for cortical microtubule networks. Nat Cell Biol. 2005;7:463–473.

101.Kemphues K. PARsing embryonic polarity. Cell. 2000;101:345–348.

102.Miyoshi Y, Nagase H, Ando H, et al. Somatic mutations of the APC gene in colorectal tumors: mutation cluster region in the APC gene. Hum Mol Genet. 1992;1:229–233.

103.Guilford P, Hopkins J, Harraway J, et al. E-cadherin germline mutations in familial gastric cancer. Nature. 1998;392:402–405.

104.Strutt D. Frizzled signalling and cell polarisation in Drosophila and vertebrates. Development. 2003;130:4501–4513.

448

Adhesion molecules in the regulation of cell differentiation: Mainly about Wnt

105.Chen AE, Ginty DD, Fan CM. Protein kinase A signalling via CREB controls myogenesis induced by Wnt proteins. Nature. 2005;433: 317–322.

106.Schutz L, Mora PT. The need for direct cell contact in ‘contact’ inhibition of cell division in culture. J Cell Physiol. 1968;71:1–6.

107.St Croix B, Sheehan C, Rak JW, Florenes VA, Slingerland JM, Kerbel RS. E-Cadherin-dependent growth suppression is mediated by the cyclindependent kinase inhibitor p27(KIP1). J Cell Biol. 1998;142:557–571.

108.Grazia Lampugnani M, Zanetti A, Corada M, et al. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin,-catenin, and the phosphatase DEP-1/CD148. J Cell Biol. 2003;161: 793–804.

109.Ostman A, Yang Q, Tonks NK. Expression of DEP-1, a receptor-like protein-tyrosine-phosphatase, is enhanced with increasing cell density. Proc Natl Acad Sci U S A. 1994;91:9680–9684.

110.Holsinger LJ, Ward K, Duffield B, Zachwieja J, Jallal B. The transmembrane receptor protein tyrosine phosphatase DEP1 interacts with p120(ctn). Oncogene. 2002;21:7067–7076.

111.Balda MS, Garrett MD, Matter K. The ZO-1-associated Y-box factor ZONAB regulates epithelial cell proliferation and cell density. J Cell Biol. 2003;160:423–432.

112.Sourisseau T, Georgiadis A, Tsapara A, et al. Regulation of PCNA and cyclin D1 expression and epithelial morphogenesis by the ZO-1-regulated transcription factor ZONAB/DbpA. Mol Cell Biol. 2006;26:2387–2398.

113.Barrios-Rodiles M, Brown KR, Ozdamar B, et al. High-throughput mapping of a dynamic signaling network in mammalian cells. Science. 2005;307:1621–1625.

114.Wang Z, Mandell KJ, Parkos CA, Mrsny RJ, Nusrat A. The second loop of occludin is required for suppression of Raf1-induced tumor growth. Oncogene. 2005;24:4412–4420.

449

Соседние файлы в папке Gompert Signal Transd