Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Diss / 10

.pdf
Скачиваний:
143
Добавлен:
27.03.2016
Размер:
18.05 Mб
Скачать

Estimate of Stochastic Process Frequency-Time Parameters

573

and

 

ητ (t1τ (t2 ) = Rτ (t1 t2 ).

(15.296)

As we can see from (15.295) and (15.296), the average values are equal to the probabilities of nonexceeding and exceeding the level M by the stochastic process realization x(t) at the instants t1 and t2

M M

 

Rθ (t1 t2 ) = ∫ ∫ p2 (x1, x2 ; t1 t2 )dx1dx2 ;

(15.297)

−∞ −∞

 

Rτ (t1 t2 ) = p2 (x1, x2 ; t1 t2 )dx1dx2 .

(15.298)

M M

 

Taking into consideration (15.294) through (15.298), introducing new variables t = t1 t2, and changing the order of integration, we can write

 

 

 

 

 

2

T

 

 

 

τ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

Rθ (t)dt 1,

M M0 ,

 

 

 

 

2

 

Var{N }

 

T{F(M)}

 

 

 

T

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

(15.299)

 

 

2

 

 

 

 

 

 

 

 

 

 

 

[NT]

 

2

 

 

T

 

 

 

τ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

Rτ (t)dt 1, M M0 ,

 

 

 

 

 

2

 

 

 

 

 

 

T{1 F(M)}

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

where Var{N*}/[NT]2 is the normalized variance of the average number of stochastic process spikes or the relative variance of the average number of stochastic process spikes.

As applied to the Gaussian and Rayleigh stochastic processes, we can present the two-dimensional probability distribution functions in the form (14.50) and (14.71). In the case of Gaussian stochastic process with zero mathematical expectation, that is, F(M0) = 1 − F(M0) at M0 = 0. Substituting (14.50) into (15.297) and (15.298), we obtain

 

 

 

 

M 2

 

 

 

 

(v) M 2 Rv (t)

 

Rθ

(t) = 1 Q

 

+

1

Q

 

 

 

 

 

 

,

 

 

v!

 

 

 

 

 

 

σ

v=1

 

 

 

 

 

σ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M 2

 

 

 

(v) M 2

Rv (t)

 

 

Rτ (t) =

Q

 

+

1 Q

 

 

 

 

 

 

 

.

 

 

 

 

 

 

v!

 

 

 

 

 

σ

v=1

 

 

 

 

 

σ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In accordance with (15.299), we obtain

 

 

 

 

 

 

M

−2 ∞

M

0,

 

 

 

1

Q

 

 

avcv,

σ

 

 

 

σ

v=1

 

Var{N

}

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[NT]

 

 

 

M

−2

M

0,

 

 

 

 

 

Q

avcv,

σ

 

 

 

 

 

 

σ

 

v=1

 

 

 

 

 

 

 

 

 

 

 

(15.300)

(15.301)

(15.302)

574

Signal Processing in Radar Systems

where av and cv are defined analogously as in (14.56) and (14.58). In doing so, the values of the coefficients av are presented in Table 14.1 as a function of v and the normalized level z = Mσ −1.

Since

 

 

M

 

 

M

 

 

1 Q

 

 

= Q

 

 

,

(15.303)

 

 

 

 

σ

 

 

σ

 

 

we can see from (15.302) that the normalized variance of the average number of stochastic process

spikes Var{ *}/[ ] is symmetrical with respect to the level /σ = 0. Because of this, we can write

N NT 2 M

 

 

 

 

 

 

M

 

 

−2

 

 

 

 

 

 

 

 

 

 

 

 

 

Var{N

}

 

 

 

 

 

 

 

 

 

 

 

= Q

 

σ

 

 

 

avcv.

 

 

2

 

 

 

 

 

 

 

 

 

[NT]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v=1

 

As applied to the Gaussian stochastic process with the normalized correlation function

 

 

 

(t) = exp{−α2t2},

 

 

we obtain

 

 

 

 

 

 

 

 

cv =

 

π

 

Q(p

v) +

1 exp{vp}

,

 

 

1

 

 

p

 

p v

 

v

 

 

 

 

 

where p = αT. If p 1

 

 

 

 

 

 

 

 

 

 

 

 

cv =

π

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p v

 

 

 

(15.304)

(15.305)

(15.306)

(15.307)

The normalized squared deviation of the average number of stochastic process spikes

Var{N } / [NT] as a function of the normalized level |z = Mσ −1| for realizations of stochastic process with fixed duration, the parameter p = αT is shown in Figure 15.16. As we can see from

 

 

 

 

 

 

 

1

p = 3

 

 

 

 

 

 

 

 

 

 

 

 

 

Var{N*}

2

p = 5

 

 

 

 

 

 

 

 

 

 

 

2.0

 

 

 

 

 

 

3

p = 10

 

 

 

 

 

 

 

 

 

 

 

 

NT

1

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

p = 20

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

5

p = 50

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.5

 

 

 

 

 

 

6

p = 100

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

0.5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

σ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.4

 

0.8

1.2

1.6

2.0

 

 

 

 

 

 

FIGURE 15.16  Normalized squared deviation of the average number of stochastic process spikes as a function of the normalized level for Gaussian realizations of a stochastic process with fixed duration.

Estimate of Stochastic Process Frequency-Time Parameters

575

Figure 15.16, the normalized squared deviation Var{N } / [NT] of the average number of stochastic process spikes is increased with increasing in the absolute level value |z = Mσ −1| and decreasing the parameter p = αT. At p = αT 10 and |z = Mσ−1| = 0, we can write

 

 

Var{N }

1.3 .

 

 

(15.308)

 

 

 

 

 

 

 

 

 

 

αT

 

 

 

[NT]2

 

As applied to the Rayleigh stochastic process, we have that

 

= 0 when

 

τ

 

 

M

 

= ln 2 0.83.

(15.309)

 

2σ

 

 

 

 

 

 

 

 

Substituting (14.71) into (15.297) and (15.298), we obtain

 

 

 

 

 

 

M

2

 

 

2

 

 

R

2v

(t)

 

 

 

 

M

2

 

 

 

 

M

2

 

 

 

 

M

2

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R (t) =

1

exp

 

 

 

+

 

exp

 

 

L

 

 

vL

 

 

 

 

 

;

 

 

2

 

 

 

 

 

 

 

 

2

v

 

 

 

2

 

v−1

 

 

 

2

 

 

θ

 

 

 

 

2σ

 

 

(v!)

2

 

 

 

 

 

σ

 

 

 

2σ

 

2σ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M

2

 

 

 

R

2v

(t)

 

 

 

M

2

 

 

 

 

M

2

 

 

 

 

 

M

2

 

2

 

 

(t) = exp

 

 

+

 

 

 

exp

 

 

 

 

 

 

 

 

vLv−1

 

 

 

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

Lv

 

 

 

 

 

 

 

.

 

 

2σ

2

(v!)

2

σ

2

 

2σ

2

2σ

2

 

τ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In accordance with (15.299), we obtain

 

 

 

 

 

 

 

 

M2

 

 

 

 

 

 

 

 

 

exp

 

 

 

bvdv,

M 0.83,

 

 

 

2σ

2

 

 

 

 

 

 

 

v=1

 

 

Var{N

}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

−2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[NT]

 

 

 

 

 

 

 

M

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

bvdv,

 

 

 

 

 

 

1

exp

 

 

 

 

 

 

M < 0.83,

 

 

 

 

 

 

2σ

2

 

 

 

 

 

 

 

 

 

 

 

 

 

v=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(15.310)

(15.311)

(15.312)

where bv and dv are defined analogously as in (14.86) and (14.83). The values of coefficients are given in Table 14.3. The normalized squared deviation of the average number of stochastic process spikes

Var{N } / [NT] as a function of the normalized level M / 2σ2 at p1 = 2αT = 10 in the case of the exponential normalized correlation function given by (15.305) is shown in Figure 15.17. As we can see from Figure 15.17, the normalized squared deviation of the average number of stochastic

process spikes Var{N }[NT] increases with an increase in the deviation of the normalized level

M / 2σ2 with respect to the median of the probability distribution function M0 / 2σ2 = ln 2 at the fixed p1 = 2αT . This phenomenon is explained by a decrease in the number of spikes higher

or lower than the level M0 / 2σ2 = ln 2 .

15.6.2  Estimation of Average Spike Duration and Average Interval between Spikes

Considering the stochastic process realization presented in Figure 15.15a, we can see that with higher number of spikes N within the limits of the observation time interval [0, T] the estimate of

576

Signal Processing in Radar Systems

Var{N*}

8.0NT

6.0

4.0

2.0

M

√ 2σ

0.0

0.4

0.8

1.2

1.6

2.0

FIGURE 15.17  Normalized squared deviation of the average number of stochastic process spikes as a function of the normalized level for Rayleigh realizations of the stochastic process with fixed duration.

spike duration average τ* and the estimate of average of the interval θ* between the spikes can be presented as

τ =

θ =

N

N1 τi ,

i=1

(15.313)

N

N1 θi.

i=1

for the given realization. The relationships given by (15.313) can be presented in the following form:

 

 

 

1

T

 

 

 

 

 

 

 

 

 

 

τ

 

=

N ητ (t)dt,

 

 

 

 

0

(15.314)

 

 

 

 

 

 

 

 

1

T

 

θ

=

 

η (t)dt,

N

 

 

 

θ

 

 

 

 

0

 

where ητ(t) and ηθ(t) are given by (15.282) and (15.283).

The device to measure the spike duration average τ* and the average of interval θ* between the spikes can be designed based on (15.313) and (15.314). As applied to the estimate of the spike duration average τ*, the flowchart of measurer is depicted in Figure 15.18. This measurer consists

x(t)

 

 

ητ(t)

 

 

 

Trigger

Integrator

 

 

 

 

 

 

 

 

 

 

 

 

 

Divider τ*

M

Counter

N*

FIGURE 15.18  Measurement of spike duration and the average of interval between the spikes.

Estimate of Stochastic Process Frequency-Time Parameters

577

of the trigger forming at the output normalized by amplitude and shape function ητ(t), the counter of spikes, the integrator, and the divisor determining the estimate of spike duration average τ*. The threshold M is given by external source.

To define the statistical characteristics of estimates τ* and θ* we assume that the condition T τcor

 

 

 

 

 

 

 

 

is satisfied. In this case, we can approximately assume N ≈ NT. Then

 

 

 

 

1

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NT ητ (t)dt,

τ

 

=

 

 

 

 

 

 

 

 

 

0

(15.315)

 

 

 

 

 

 

 

 

 

 

 

 

1

T

 

θ

=

 

 

η (t)dt.

 

 

 

 

 

 

 

 

NT

θ

 

 

 

 

 

 

 

0

 

The mathematical expectation of estimates can be presented in the following form:

 

 

 

1

T

 

 

 

 

 

 

 

 

 

 

 

 

NT ητ (t) dt,

τ

 

=

 

 

 

 

 

 

 

0

(15.316)

 

 

 

 

 

 

 

 

 

 

1

T

 

θ

=

 

η (t) dt.

 

 

 

 

 

 

 

NT

θ

 

 

 

 

 

 

0

 

Taking into consideration (15.291) and (15.292), we see that τ = τ and θ = θ. In other words, the estimates of the spike duration average τ* and the average of interval θ* between the spikes are unbiased as a first approximation.

Determine the estimate variance of the average spike duration of stochastic process at level M:

Var{τ } = (τ − τ )2 =

1

 

T T ητ (t1τ (t2 ) dt1dt2 τ 2.

(15.317)

[

 

 

]2

NT

 

 

 

 

0

0

 

The mathematical expectation

 

 

 

 

ητ (t1τ (t2 ) = τ (t1 t2 )

(15.318)

is defined by (15.298). By analogy with (15.299), we can define the estimate variance of the average spike duration τ*

Var{τ } =

1

 

2

T

τ

τ (t)dt τ

2

 

(15.319)

 

 

 

 

1

 

 

 

.

 

 

2

 

 

 

N

 

 

 

 

 

T

 

T

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

The estimate variance of the average of interval θ* between the spikes can be presented in the following form:

Var{θ } =

1

 

2

T

 

τ

 

 

2

 

 

 

θ (t)dt − θ

 

 

 

 

 

 

1

 

 

 

.

(15.320)

 

 

2

 

 

 

N

 

 

 

 

 

T

 

T

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

578

Signal Processing in Radar Systems

As applied to the Gaussian stochastic process, if the condition T τcor is satisfied the normalized correlation functions τ(t) and θ(t) are given by (15.300) and (15.301) and the average number of stochastic process spikes at level M can be determined as

 

 

M

 

1

 

d2

(t)

 

 

M2

 

 

 

 

 

 

N

 

=

 

 

 

 

 

 

exp

 

 

.

(15.321)

 

 

 

2

 

 

 

2

 

 

 

σ

 

2π

 

dt

 

 

t=0

 

2σ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taking into consideration (15.285) and substituting (15.319), we obtain

 

8π2

 

 

M2

 

 

T

 

 

 

 

 

 

 

 

 

Var{τ } =

 

 

 

exp

 

 

 

αv

v (t)dt,

(15.322)

T (d2 (t)/dt2 )

 

 

σ

2

 

 

 

 

 

 

 

 

 

 

 

 

t =0

 

 

 

v=1

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

where αv is given by (14.56) and Table 14.1. The formula (15.322) is correct for measuring the estimate variance of the average of interval θ* between the spikes.

As applied to the normalized correlation function given by (15.305), the estimate variance of the average spike duration τ*

 

2π

2

 

2

 

αv

 

 

Var{τ } =

 

π exp M2

 

,

(15.323)

 

 

 

 

 

p

 

σ

v=1

v

 

 

where p = αT. As we can see from (15.323), in the Gaussian stochastic process and the fixed duration of the observation interval [0, T] case, the estimate variance of the spike duration average τ* and the estimate variance of the average of interval θ* between the spikes are minimum at M/σ = 0.

As applied to the Rayleigh stochastic process, if the condition T τcor is satisfied the normalized correlation functions τ(t) and θ(t) are given by (15.310) and (15.311) and the average number of stochastic process spikes at level M can be determined as

 

 

M

 

1

 

d2

(t)

 

M

 

M2

 

 

 

 

 

 

N

 

=

 

 

 

 

 

 

exp

exp

 

 

.

(15.324)

 

 

 

2

 

 

 

2

 

 

 

σ

 

2π

 

dt

 

 

t=0

 

σ

 

2σ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substituting τ(t) into (15.319) and taking into consideration (15.285) and (15.324), we obtain

 

2π

 

 

M2

2σ2

 

T

 

 

Var{τ } =

 

 

 

2v (t)dt.

 

 

 

 

exp

 

 

 

 

 

bv

(15.325)

T (d2 (t)/dt2 )

 

 

σ

2

M

2

 

 

 

 

 

 

 

 

 

 

 

 

 

t =0

 

 

 

 

 

v=1

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is easy to prove that (15.235) is true to define the estimate variance of the average of interval θ* between the spikes.

Estimate of Stochastic Process Frequency-Time Parameters

579

15.7  MEAN-SQUARE FREQUENCY ESTIMATE OF SPECTRAL DENSITY

The mean-square frequency fgiven by (15.6) is widely used as a parameter characterizing the spectral density of stochastic process. The value f defines a dispersion of component of the stochastic process spectral density relative to zero frequency. As applied to low-frequency stationary stochastic processes, the mean-square frequency fcharacterizes the effective bandwidthof spectral density. Taking into consideration (15.259), we can present the mean-square frequency f in the following form:

 

 

 

 

 

d2 R(τ)

 

 

 

 

dx(t) 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

dτ

2

 

 

1

 

 

dt

 

(15.326)

 

 

 

 

 

 

f =

2π

R(τ)

=

2π

 

 

x2 (t) .

 

 

 

τ = 0

Here and further, we assume that the investigated stochastic process possesses zero mathematical expectation. As applied to the Gaussian stochastic process, the mean-square frequency fis matched with the average number of stochastic process spikes per unit time at the zero level (15.321).

According to (15.326), it is worthwhile to consider for the investigated stationary stochastic process the following value

 

 

 

 

1

 

 

T dx(t)

2

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

f

 

=

1

 

 

T 0 dt

 

 

(15.327)

 

2π

1

 

T x2 (t)dt

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

0

 

 

 

as the estimate of the mean-square frequency that tends to approach fas T ∞. The flowchart of measurer of the mean-square frequency of the stochastic process is shown in Figure 15.19. To define the characteristics of the mean-square frequency estimate we can use the following representation of numerator and denominator in (15.327) in the following form:

1 T

dx(t)

2

 

 

 

 

 

 

 

 

 

dt = Varx

+ Varx ,

(15.328)

T

 

 

 

dt

 

 

 

0

 

 

 

 

 

 

 

 

 

1

T

x2 (t)dt = Varx +

Varx ,

(15.329)

 

 

T

 

 

 

0

 

 

 

 

 

 

where

Varx and Varx· are the mathematical expectations of variances of the stochastic process and its derivative

Varx and Varx· are the random errors of definition of the earlier-mentioned variances within the limits of the finite observation time interval [0, T]

x(t)

 

dx

 

 

Squarer

 

 

 

1

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y1

 

 

f *

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y2

 

 

 

 

 

y1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y2

 

 

 

 

 

 

 

Squarer

 

 

 

1

 

 

Divider

 

Amplifier

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 15.19  Measurement of the averaged squared frequency of stochastic process.

580 Signal Processing in Radar Systems

As we discussed before, the estimates of variances are unbiased and the variances of variance estimates are defined by (13.62) where we need to use the corresponding correlation function of the investigated stochastic process and its first derivative instead σ2 (τ).

Going forward, we assume that the condition T τcor is satisfied. In this case, the errors Varx

and

Varx will be small compared to Varx and Varx. To define the bias of the mean-square frequency

 

 

 

 

 

·

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

·

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

under previous assumptions, we can think that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Varx +

 

 

 

 

 

 

 

 

 

 

1+

Varx

 

 

 

1+ 1

 

 

 

 

 

 

 

Varx2

1 − 1

 

 

 

Varx2

.

 

 

=

1

 

 

 

Varx

=

 

Varx

 

 

 

Varx

1

 

 

 

Varx

+ 3

 

f

f

 

 

 

 

 

f

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

Varx +

 

 

Varx

 

 

 

 

 

 

 

Varx

 

 

 

 

 

 

2

 

Varx

8

 

 

 

 

2

 

2

Varx

8

 

 

 

 

 

 

 

 

 

 

1+

 

 

 

 

 

 

 

 

Varx

 

Varx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Varx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(15.330)

Now, we are able to obtain the relative bias of estimate

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

f

f

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

≈ −

1

 

 

Varx

 

− 3

Varx

 

+ 2

 

Varx

Varx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

,

 

(15.331)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

2

 

2

 

 

 

Varx Varx

 

 

 

 

 

 

 

 

 

 

f

 

 

 

 

f

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Varx

 

 

 

 

 

Varx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where under the condition T τcor we have

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

T

dR(τ)

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Varx

Varx =

 

 

 

 

 

dτ.

 

 

 

 

 

 

(15.332)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

0

 

dτ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a result, the relative bias can be presented in the following form:

 

 

 

 

 

 

 

 

′′(τ)

 

2

 

2

(τ)

 

 

 

f

 

1

 

 

 

2

 

 

 

 

 

 

 

 

 

=

 

 

 

 

dτ + 3

 

(τ)dτ + 2

 

 

dτ

,

(15.333)

 

 

 

 

 

 

′′(0)

 

 

′′(0)

 

f

 

2T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

0

 

0

 

 

 

 

 

where (τ), (τ), and (τ) are the normalized correlation function of the investigated stochastic process and its first and second derivatives. As applied to the exponential normalized correlation function of the investigated stochastic process given by (15.305), we can write

 

 

 

 

5 2π

 

f

=

(15.334)

 

 

 

 

 

32αT ,

 

 

 

 

 

 

f

 

 

 

that is, it means that the bias of estimate is inversely proportional to the observation time interval T. Define a dispersion of the mean-square frequency estimate

 

 

 

 

 

 

 

 

 

 

+

Varx

1 +

Varx

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Varx

 

 

 

Varx

 

 

 

D{f } = ( f f )2 = f 2

 

+1 2

 

 

(15.335)

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

1

+

Varx

 

1 +

Varx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Varx

 

 

Varx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimate of Stochastic Process Frequency-Time Parameters

581

Using two-dimensional Taylor expansion in series for the first and third terms in (15.335) about the points

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Varx = 0

 

and

 

 

Varx

= 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Varx

 

 

 

 

 

 

Varx

 

 

 

 

 

 

 

 

 

 

and limiting by terms of the second order, we obtain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Varx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

1

 

 

 

 

1

2

 

 

D{f

 

 

 

 

 

 

 

 

 

 

 

 

 

Varx

 

 

 

 

 

Varx

 

 

}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Varx

 

+ 1

 

 

Varx

 

 

 

 

 

 

 

 

1

+

 

 

 

 

 

1

 

 

 

 

 

 

 

 

+

 

 

 

2 1

+

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

Varx

 

 

Varx

 

 

 

2

 

2

Varx

 

8

2

 

 

f

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Varx

 

 

 

 

 

 

 

Varx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 1

Varx

+

3

 

 

 

Varx2

.

 

 

 

 

 

 

 

 

 

 

 

 

 

(15.336)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

Varx

 

8

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Varx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Under averaging to a first approximation, we obtain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

}

 

 

 

′′(τ)

 

2

 

 

 

 

 

2 (τ)

 

 

 

 

 

 

 

 

 

 

 

 

D{

f

 

1

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dτ +

 

(τ)dτ + 2

 

 

 

dτ .

 

(15.337)

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

′′(0)

 

′′(0)

 

 

 

 

 

 

 

 

 

 

 

f

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

0

 

 

 

 

 

 

 

As applied to the exponential normalized correlation function given by (15.305), we obtain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D{

 

 

} 3 2π 0.47

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

 

 

 

 

 

 

 

 

(15.338)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16αT

αT .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f

 

 

 

 

 

 

 

 

 

 

 

Comparing (15.338) with the relative variance of estimate of the average number of Gaussian stochastic process spikes for the same normalized correlation function given by (15.308), we see that according to (15.326), the average mean-square frequency estimate or the average number of spikes leads to the bias of estimate and decrease in estimate dispersion approximately in 2.8 times.

15.8  SUMMARY AND DISCUSSION

Methods of the correlation function estimate can be classified on three groups subject to a principle of realization of delay and other elements of correlators: analog, digital, and analog-to- digital. In turn, the analog measurement procedures can be divided based on the methods using a representation of the investigated stochastic process both as the continuous process and as the sampled process. As a rule, physical delays are used by analog methods with continuous representation of the investigated stochastic process. Under discretization of investigated stochastic process in time, the physical delay line can be changed by corresponding circuits. Under the use of digital procedures to measure the correlation function estimate, the stochastic process is sampled in time and transformed into binary number by analog-to-digital conversion. Further operations associated with the signal delay, multiplication, and integration are carried out by the shift registers, summator, and so on.

We can see that the maximum value of variance of the correlation function estimate corresponds to the case τ = 0 and is equal to the variance of the stochastic process variance estimate given by (13.61) and (13.62). Minimum value of variance of the correlation function estimate ­corresponds to the case when τ τcor and is equal to one-half of the variance of the stochastic process variance estimate.

582

Signal Processing in Radar Systems

The correlation function of stationary stochastic process can be presented in the form of expansion in series with respect to earlier-given normalized orthogonal functions. The variance of correlation function estimate increases with an increase in the number of terms of expansion in series v. Because of this, we must take into consideration this fact choosing the number of terms under expansion in series.

In some practical problems, the correlation function of stochastic process can be measured accurately with some parameters defining a character of its behavior. In this case, the measurement of correlation function can be reduced to measurement or estimation of unknown parameters of correlation function. Because of this, we consider the optimal estimate of correlation function arbitrary parameter assuming that the investigated stochastic process ξ(t) is the stationary Gaussian stochastic process observed within the limits of time interval [0, T] in the background of Gaussian stationary noise ζ(t) with known correlation function.

The optimal estimate of stochastic process correlation function can be found in the form of estimations of the elements Rij of the correlation matrix R or elements Cij of the inverse matrix C. In the case of Gaussian stationary stochastic process with the multidimensional pdf given by (12.169), the solution of likelihood ratio equation allows us to obtain the estimates Cij and, consequently, the estimates of elements Rij of the correlation matrix R.

Based on (15.272), we can design the flowchart of spectral density measurer shown in Figure 15.13. The spectral density value at the fixed frequency coincides accurately within the constant factor with the variance of stochastic process at the filter output with known bandwidth. Operation principles of the spectral density measurer are evident from Figure 15.13. To define the spectral density for all possible values of frequencies, we need to design the multichannel spectrum analyzer and the central frequency of narrowband filter must be changed discretely or continuously. As a rule, we need to carry out a shift by the spectrum frequency of the investigated stochastic process using, for example, the linear law of frequency transformation instead of filter tuning by frequency. The structure of such measurer is depicted in Figure 15.14. The sawtooth generator controls the operation of measurer changing a frequency of heterodyne.

In many applications, we need to know the statistical parameters of stochastic process spike (see Figure 15.15a): the spike mean or the average number of down-up cross sections of some horizontal level M within the limits of the observation time interval [0, T], the average duration of spike, and the average interval between spikes. To measure these parameters of spikes, the stochastic process realization x(t) is transformed by the nonlinear transformer (threshold circuitry) into the pulse sequence normalized by the amplitude ητ with duration τi (Figure 15.15b) or normalized by the amplitude ηθ with duration θi (Figure15.15c).

The mean-square frequency f given by (15.6) is widely used as a parameter characterizing the spectral density of the stochastic process. The value fdefines a dispersion of component of the stochastic process spectral density relative to zero frequency. As applied to low-frequency stationary stochastic processes, the mean-square frequency fcharacterizes the effective bandwidth of spectral density.

REFERENCES

1.Lunge, F. 1963. Correlation Electronics. Leningrad, Russia: Nauka.

2.Ball, G.A. 1968. Instrumental Correlation Analysis of Stochastic Processes. Moscow, Russia: Energy.

3.Kay, S.M. 1993. Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle River, NJ: Prentice Hall, Inc.

4.Lampard, D.G. 1955. New method of determining correlation functions of stationary time series.

Proceedings of the IEE, C-102(1): 343.

5.Kay, S.M. 1998. Fundamentals of Statistical Signal Processing: Detection Theory. Upper Saddle River, NJ: Prentice Hall, Inc.

6.Gribanov, Yu.I. and V.L. Malkov. 1978. Selected Estimates of Spectral Characteristics of Stationary Stochastic Processes. Moscow, Russia: Energy.

Соседние файлы в папке Diss