Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Diss / 10

.pdf
Скачиваний:
143
Добавлен:
27.03.2016
Размер:
18.05 Mб
Скачать

Estimate of Stochastic Process Frequency-Time Parameters

543

in at the input of summator. Thus, the receiver output signal is formed. The decision device issues the value of the parameter lm, under which the output signal takes the maximum value.

If the correlation function of the investigated Gaussian stochastic process has several unknown parameters l = {l1, l2,…, lμ}, then the likelihood ratio functional can be found by (15.93) changing the scalar parameter l on the vector parameter l and the function H(l) is defined by its derivatives

H(l)

T

T

Rx (t1, t2

; l)

 

 

 

 

li

= ∫∫

li

 

ϑx (t1

, t2

; l)dt1dt2 .

(15.112)

 

0

0

 

 

 

 

 

 

The function ϑx(t1, t2; l) is the solution of integral equation that is analogous to (15.95).

To obtain the estimate of maximum likelihood ratio of the correlation function parameter the optimal measurer (receiver) should define an absolute maximum lm of logarithm of the likelihood ratio functional

 

1

T

T

1

 

 

M(l) =

2

∫∫y(t1 )y(t2 )[ϑn (t1, t2 ) − ϑx (t1, t2 , l)]dt1dt2

2

H(l).

(15.113)

 

 

0

0

 

 

 

To define the characteristics of estimate of the maximum likelihood ratio lm introduce the signal

s(l) = M(l)

(15.114)

and noise

 

n(l) = M(l) M(l)

(15.115)

functions. Then (15.113) takes the following form:

 

M(l) = s(l) + n(l).

(15.116)

Prove that if the noise component is absent in (15.116), that is, n(l) = 0, the logarithm of likelihood ratio functional reaches its maximum at l = l0, that is, when the estimated parameter takes the true value. Define the first and second derivatives of the signal function given by (15.114) at the point l = l0:

 

 

 

 

 

 

 

 

 

 

 

ds(l)

 

 

 

=

dM(l)

 

 

.

 

 

 

(15.117)

 

 

 

 

 

 

 

 

 

 

 

dl

 

l=l0

dl

 

l=l0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substituting (15.113) into (15.117) and averaging by realizations y(t), we obtain

 

 

ds(l)

 

 

 

 

1

T T

 

 

∂ϑx (t1, t2; l)

 

 

 

1

T T

 

Rx (t1, t2 ;l)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∫∫[Rn (t1, t2 ) + Rx (t1, t2; l)]

 

 

 

∫∫ϑx (t1, t2

 

 

 

 

 

 

= −

 

 

 

 

 

 

 

dt1dt2 2

; l)

 

dt1dt2

 

dl

 

 

2

 

 

 

 

l

 

l

 

 

l =l0

 

 

 

0

0

 

 

 

 

 

 

 

 

 

 

 

 

0 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l =l0

 

 

 

 

 

 

 

 

T T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= −

1 d

 

 

∫∫[Rn (t1, t2 ) + Rx (t1, t2; l)]ϑx (t1, t2; l)dt1dt2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

(15.118)

 

 

 

 

 

 

 

 

 

 

 

 

 

2 dt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0

 

 

 

 

 

 

 

 

 

 

l =l0

 

 

 

 

544 Signal Processing in Radar Systems

Since

 

 

 

 

 

 

 

 

 

 

 

 

 

R(t1, t2 ; l) = Rn (t1, t2 ) + Rx (t1, t2 ; l) = R(t2 , t1; l),

 

(15.119)

in accordance with (15.95) we have

 

 

 

ds(l)

 

 

1

T

 

T

 

 

 

 

 

 

 

 

 

 

d

 

 

(15.120)

 

dl

 

= −

2

 

[Rn (t2 , t1 ) + Rx (t2 , t1 : l)]ϑx (t1, t2 ; l)dt1

dt2 = 0.

 

 

l=l0

0

dl

0

 

 

 

 

 

 

 

 

 

 

 

 

 

l=l0

 

Now, let us define the second derivative of the signal component at the point l = l0:

 

d2s(l)

=

 

d2 M(l)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dl2

 

dl2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l =l0

 

 

 

 

 

l =l0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

T

 

 

 

 

 

 

 

 

 

 

T

T

 

 

 

 

 

 

 

Rx (t2 , t1

: l) ∂ϑx (t1, t2 ; l)

 

d

2

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

=

 

∫∫

 

 

 

 

 

 

 

 

 

dt1dt2

 

∫∫[Rn (t2 , t1 ) + Rx (t2 , t1

: l)]ϑx (t1, t2

; l)dt1dt2 .

 

 

2

 

 

 

 

 

l

 

 

l

dl2

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

0

0

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l=l0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(15.121)

In accordance with (15.95) we can write

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

T T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

 

 

∫∫

[Rn (t2 , t1 ) + Rx (t2 , t1 : l)]ϑx (t1, t2

 

 

 

 

 

 

 

 

 

 

 

 

 

; l)dt1dt2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dl2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 0

 

 

 

 

 

 

 

 

l=l0

 

 

 

 

T

2

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

d

 

 

 

[Rn

(t2 , t1 ) + Rx (t2

 

 

: l)]ϑx (t1, t2

 

 

dt2 = 0.

 

 

 

 

 

 

, t1

; l)dt1

(15.122)

 

 

 

 

 

 

dl2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

l=l0

 

Because of this

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

2

s(l)

 

 

 

 

1

T

T

Rx (t2 , t1 : l) ∂ϑx (t1, t2 ; l)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt1dt2

.

(15.123)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dl2

l

 

l

 

2

∫∫

 

l

 

 

 

 

l

 

 

 

 

 

 

 

 

 

 

 

 

= 0

 

 

0

0

 

 

 

 

 

 

 

 

 

l=l0

 

Let us prove that the condition

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d2 s(l)

 

 

< 0

 

 

 

(15.124)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dl2

 

l=l0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is satisfied forever. For this purpose, we define the averaged quadratic first derivative of the likelihood ratio functional logarithm at the point l = l0

 

2

 

 

 

 

2

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

m

=

dM(l)

 

 

=

dN(l)

 

 

,

(15.125)

 

 

dl

 

 

 

dl

 

 

 

 

 

 

l=l0

 

 

 

l=l0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimate of Stochastic Process Frequency-Time Parameters

545

which is a positive value. Substituting (15.91) into (15.113), differentiating by l, and averaging by realizations y(t), we obtain the second central moment of the first derivative of the likelihood ratio functional logarithm:

2

[M(l1) − M(l1) ][M(l2 ) − M(l2 ) ]

l1l2

T T T T

= 12 ∫∫∫∫[Rn (t1, t3 ) + Rx (t1, t3;l0 )][Rn (t2 , t4 ) + Rx (t2 , t4;l0 )]

 

0

0

0

0

 

×

∂ϑ x (t1, t2;l1) ∂ϑ x (t3, t4;l2 ) dt1dt2dt3dt4.

 

 

 

 

l1

l2

Assuming l2 = l1 = l0 and taking into consideration that

T

∂ϑx (t1, t2 ; l)

T

Rx (t1

, t; l)

 

[Rn (t1, t) + Rx (t1, t; l0 )]

dt = −ϑx (t, t2 ; l)

dt,

l1

l

 

0

 

0

 

 

 

we obtain

(15.126)

(15.127)

 

 

 

 

T

T

T

T

 

 

 

Rx (t1, t3 ; l) ∂ϑx (t3 , t4 ; l)

 

 

2

1

∫∫∫∫[Rn (t2 , t4 ) + Rx (t2 , t4 ; l0 )]ϑx (t1, t2 ; l)

 

m

 

= −

 

 

 

 

dt1dt2 dt3dt4

 

2

l

 

l

 

 

 

 

0

0

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l=l0

 

 

 

 

T

T

Rx (t1, t2 ; l) ∂ϑx (t1, t2 ; l)

 

 

 

 

 

 

 

1

∫∫

 

 

 

 

 

 

 

= −

2

 

 

 

 

dt1dt2 .

 

 

 

(15.128)

 

 

 

l

 

l

 

 

 

 

 

 

 

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l=l0

 

 

 

 

In (15.128) we have implemented (15.95) again. Comparing (15.128) with (15.123), we can see that

 

d2 s(l)

= −m2

 

dl2

 

l=l0

and, consequently, (15.124) is satisfied forever.

 

Introduce the signal-to-noise ratio (SNR)

 

SNR = s2 (l0 ) n2 (l0 )

and the normalized signal and noise functions

 

 

 

 

 

s(l)

 

 

S(l) =

 

 

,

 

s(l0 )

 

 

 

 

 

n(l)

 

 

 

N(l) =

 

 

 

.

n

2

(l0 )

 

 

 

(15.129)

(15.130)

(15.131)

546

 

Signal Processing in Radar Systems

Taking into consideration (15.120), (15.124), and (15.131), we can see that

max S(l) = S(l0 ) = 1,

 

 

(15.132)

 

 

N2 (l0 )

= 1.

 

 

 

 

In addition, as follows from the definition, the mathematical expectation of the noise function n(l) is zero. Taking into consideration the introduced notations, we can write the logarithm of the likelihood ratio functional in the following form:

M(l) = s(l0 )[S(l) + εN(l)],

(15.133)

where ε = 1/ SNR. Taking into consideration (15.133), the likelihood ratio equation for the estimate­ of correlation function parameter of Gaussian stochastic process can be presented in the following form:

dS(l)

+ ε

dN(l)

= 0.

(15.134)

 

 

 

 

dl

dl

 

 

l=lm

 

 

Usually, under the measurement of stochastic process parameters, SNR is high and, consequently, ε 1. Then, by analogy with Ref. [5], the approximated solution of likelihood ratio equation can be searched in the form of expansion in power series

lm = l0 + εl1 + ε2l2 + ε3l3 + .

(15.135)

To define the approximations l1, l2, l3 and grouping the terms with small value ε of the same power, we obtain

s1 + ε(l1s2 + n1) + ε2 (l2s2 + l1n2 + 0.5l12s3 ) + ε3 (l3s2 + l2n2 + 0.5l12n3

+

l13s4

+ l1l3s2 ) + = 0, (15.136)

 

 

 

 

 

 

6

 

where we use the following notations:

 

 

 

 

 

 

 

 

diS(l)

 

 

 

 

 

 

 

 

 

 

si =

 

 

 

,

 

 

 

dl

i

 

 

 

 

 

 

l =l0

 

 

(15.137)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

diN(l)

 

 

 

 

 

ni =

 

 

 

.

 

 

 

dl

i

 

 

 

 

 

 

 

l =l0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the system of functions 1, x, x2,… is linearly independent, the equality given by (15.136) is satisfied for any ε if and only if all coefficients of terms with power equal to ε are equal to zero. Zero approximation is matched with the true value of the parameter l0 since S(l) reaches its absolute maximum at

l = l0 .

(15.138)

Estimate of Stochastic Process Frequency-Time Parameters

547

Equating to zero the coefficients at ε, ε2, and ε3, we obtain equations to define l1, l2, and l3. We can write solutions of these equations in the following form:

 

= −

 

n1

,

 

 

 

l1

 

 

 

 

 

 

 

s2

 

 

 

 

 

 

 

 

 

 

 

 

 

l1n2

2

 

 

 

 

= −

 

+ 0.5l1 s3

,

 

(15.139)

l2

 

 

 

 

 

 

 

 

s2

 

 

 

 

 

 

 

 

 

 

 

l2n2 + 0.5l12n3 + 6−1l13s4 + l1l2s3

 

 

l3 = −

.

 

 

 

 

 

 

 

 

 

s2

 

 

 

 

 

 

 

 

Taking into consideration the first three approximations l1, l2, and l3, the conditional bias and variance of maximum likelihood ratio take the following form:

b(lm |l0 ) = ε l1 + ε2 l2 + ε3 l 3,

(15.140)

Var{lm |l0} = ε2[ l12 l1 2 ]+ 2ε3[ l1l2 l1 l2 ]

+ ε4[ l22 l2 2 + 2 l1l3 2 l1 l3 ].

(15.141)

Averaging is carried out by all possible realizations of the total stochastic process η(t) at the fixed value of estimated parameter l0. The relative error of estimate bias and variance that can be defined as the ratio of the first term with small order to the first term of expansion takes the order ε2.

We are limited by consideration of the first approximation. In doing so, the random error of a single measurement can be presented in the following form:

 

 

 

dN(l)

 

 

 

 

 

dn(l)

 

 

 

 

 

l = lm l0 = εl1 = −ε

 

 

dl

 

 

= −

 

dl

 

 

 

.

(15.142)

 

d2S(l)

 

 

 

 

 

d2s(l)

 

 

 

 

 

 

dl2

 

l=l0

 

 

dl2

 

 

 

l =l0

 

 

 

 

 

 

 

For the first approximation, the estimate of arbitrary parameter of correlation function will be unbiased, since n(l) = 0. Taking into consideration (15.128) and (15.129), the variance of estimate can be presented in the following form:

 

 

2

n(l1)n(l2 )

 

 

 

Var{lm |l0} =

 

l1l2

l= l0

= m−2.

(15.143)

 

 

 

 

 

 

 

 

d2S(l) 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dl

2

 

 

 

 

 

 

 

 

 

l= l0

 

 

 

 

 

 

 

 

 

 

 

If the observation time interval is much longer than the correlation interval of the investigated stochastic process η(t), a flowchart of optimal measurer is significantly simplified. In this case, the logarithm of the likelihood ratio functional is given by (15.111), where the signal function can be described in the following form:

T

 

1

 

 

s(l) = T

Ry (τ) ϑ(τ;l)dτ −

H(l).

(15.144)

2

0

 

 

 

 

548

Signal Processing in Radar Systems

The first term in (15.144) can be presented in the following form:

T

Ry (τ) ϑ(τ;l)dτ = 21 T

[Rn (τ) + Rx (τ;l0 )]ϑ(τ;l)dτ ≈ 21 [Rn (τ) + Rx (τ;l0 )]ϑ(τ;l)dτ

 

0

 

T

−∞

 

 

 

 

1

 

 

1

Sx (ω;l)[Sn (ω) + Sx (ω;l0 )]

 

 

=

 

[Sn (ω) + Sx (ω;l0 )]ϑ(ω;l)dω =

 

 

dω.

 

 

Sn (ω)[Sn (ω) + Sx (ω;l)]

 

 

 

−∞

 

 

−∞

 

 

(15.145)

Substituting (15.145) into (15.114) and taking into consideration (15.110), we obtain the signal function in the following form:

 

T

Sx (ω ;l)[Sn (ω) + Sx (ω ;l0 )]

 

 

Sx (ω ;l)

s(l) =

 

 

 

 

ln 1

+

 

dω .

4π

Sn (ω)[Sn (ω) + Sx (ω ;l)]

 

 

 

 

 

Sn (ω)

 

 

−∞

 

 

 

 

 

 

The signal function reaches its maximum at l = l0:

 

T

Sx (ω ;l0 )

 

 

Sx (ω ;l0 )

s(l0 ) =

 

 

 

 

ln 1

+

 

dω .

4π

Sn (ω)

Sn (ω)

 

 

 

 

 

 

 

−∞

 

 

 

 

 

 

Analogously, we can define the variance of noise component n(l) given by (15.115)

 

2

 

T

Sx2 (ω ;l0 )

 

n

 

(l) =

 

 

dω .

 

Sn2 (ω)

 

 

 

 

−∞

 

 

Consequently, SNR given by (15.130) can be presented in the following form:

 

 

 

 

Sx (ω;l0 )

 

 

Sx (ω;l0 )

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

− ln 1+

 

 

dω

 

T

Sn (ω)

 

 

Sn (ω)

 

 

−∞

 

 

 

 

 

 

SNR =

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

Sx2 (ω;l0 )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−∞

 

 

dω

 

 

 

 

 

 

 

 

 

Sn2 (ω)

 

 

 

 

 

(15.146)

(15.147)

(15.148)

(15.149)

If SNR is high, the variance of correlation function estimate is defined by (15.143), where the value m2 given by (15.129) can be presented in the following form using the spectral density components:

 

2

 

T

 

Rx (τ; l)

 

∂ϑ x (τ; l)

 

 

 

 

T

Sx (ω ; l)

 

∂ϑ x (ω ; l)

 

 

 

m

 

= −T

 

 

 

×

 

l

dτ

 

≈ −

 

l

×

l

dω

 

 

 

 

 

l

 

 

 

 

0

Sx (ω ; l) 2

 

 

l= l0

 

−∞

 

 

 

 

 

l= l0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

dω

.

 

 

 

 

 

(15.150)

 

 

 

[Sn (ω) + Sx (ω ; l)]2

 

 

 

 

 

 

 

 

 

−∞

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l= l0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Estimate of Stochastic Process Frequency-Time Parameters

549

We can define the second set of approximations for the bias and variance of arbitrary parameter estimate of the correlation function of the investigated stochastic process in accordance with (15.140) and (15.141). After cumbersome mathematical transformations, we obtain that the bias and variance of estimate take the following form:

b(lm |l0 ) = − 12 J1211 (J1020 )−2 ,

Var{l

 

|l } =

2

+

 

4

 

 

12J 40

6J 21

J11

+

1

 

7

J11

2

+ 6J11J30

m

20

 

 

 

3

20

 

 

 

0

 

 

 

 

 

10

12

13

 

2

12

 

12 10

 

 

 

J10

 

20

 

 

 

 

 

 

J10

 

 

 

 

 

 

 

 

 

J10

 

 

 

 

 

 

 

 

 

 

 

 

 

where

 

T

 

iS

x

(ω; l) q

 

j S

x

(ω; l) p

Jijpq =

 

 

 

 

 

 

 

 

 

 

 

[Sx (ω; l0 ) + Sn (ω)]−(

2π

 

l

i

l

j

 

−∞

 

 

 

l = l0

 

 

l = l0

(15.151)

12 J1030 2 ,

(15.152)

p+ q) dω. (15.153)

Comparing (15.129), (15.150), and (15.153), we see that

m2 =

1

J1020 .

(15.154)

 

2

 

 

Based on the formulae obtained, we can define the statistical characteristics of the estimate of correlation function parameter α of the investigated stochastic process additively mixed with the white noise possessing the one-sided power spectral density 0

Rx (τ; α) = σ2 exp{−α | τ |}.

(15.155)

To reduce mathematical transformations and computations, the bias of estimate of the correlation function parameter α is defined taking into consideration the second approximation given by (15.151) and the variance of estimate of the correlation function parameter α is defined taking into consideration the first approximation given by (15.129) (the first term in the right side of (15.152)).

The correlation function parameter α defines the effective bandwidth of spectral density of stochastic process, that is, fef = 0.25α. Thus, we can write

 

 

 

 

 

 

 

 

2ασ2

 

 

Sx (ω; α)

=

 

 

 

 

 

 

,

α

2

+ ω

2

 

 

 

 

 

 

 

(15.156)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sn (ω)

=

 

0

.

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduce the following notations:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

4σ2

 

 

 

 

q2

 

 

 

 

 

 

,

 

 

 

 

0α

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p =

 

 

 

 

 

,

 

 

(15.157)

 

τcor

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 + q2 ,

 

 

 

β =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

550

Signal Processing in Radar Systems

q2 is the ratio of the investigated stochastic process variance to the white noise power within the limits of effective bandwidth of the signal; p is the ratio between the observation time interval of the investigated stochastic process and its correlation interval. Using these notations, we can write

J1020 =

 

pq4 3 − β2 + 3β + 1)

;

 

(15.158)

 

α02β3 (1 + β)3

 

 

 

 

 

 

J1211 = −

2 pq4 (2β3 − β2 + 4β + 1)

,

(15.159)

 

α02β3 (1 + β)4

 

 

 

 

 

 

where α0 is the true value of estimated correlation function parameter. Substituting (15.158) and (15.159) into (15.151) and (15.152), we obtain

bm | α0 ) =

α0 (1

+ β)2 β3 (2β3 − β2 + 4β

+ 1)

;

(15.160)

pq4 3 − β2 + 3β + 1)2

 

 

 

 

 

 

 

Var{αm | α0} =

 

02 (1 + β)3β3

 

 

 

(15.161)

 

pq4 3 − β2 + 3β + 1)2 .

 

 

 

 

When q2 1 and 2T 01 1, in this case (15.160) and (15.161) are correct, then β ≈ 1 and (15.160) and (15.161) take a simple form:

 

bm | α0 ) ≈

0

=

3 20α02 ;

(15.162)

 

 

 

 

 

2 pq4

 

32σ4T

 

 

 

 

02

 

 

 

20α30

 

(15.163)

 

Var{αm | α0} ≈ pq4

 

= 4T .

 

 

 

If q2 1 and β q, (15.162) and (15.163) take the following form:

 

 

 

 

 

 

α0

 

(15.164)

 

bm | α0 ) = pq2 ;

 

 

 

Var{αm | α0} =

02

(15.165)

 

 

pq .

 

 

 

The relative shift of

estimate bias pb(αm|α0)/α0

 

and relative root-mean-square

deviation

( p Var{αm | α0}) 2α02

as a function of ratio between the variance of investigated stochastic ­process

to power noise q2 within the limits of effective spectral bandwidth are presented in Figures 15.9 and 15.10.

Consider the second example. For this purpose, we analyze the correlation function of the nar-

rowband stochastic process ξ(t)

 

Rx (τ; ν) = σ2ρen (τ) cos ντ,

(15.166)

Estimate of Stochastic Process Frequency-Time Parameters

551

 

 

pbm|α0)

 

 

 

 

 

 

α0

 

 

 

 

1.0

 

 

 

 

 

 

 

 

 

 

 

 

0.8

 

 

 

 

 

 

 

 

 

 

 

 

0.6

 

 

 

 

 

 

 

 

 

 

 

 

0.4

 

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

q2

 

 

 

 

0.0

 

 

 

 

2

5

10

20

50

 

FIGURE 15.9  Relative estimate bias shift as a function of the ratio between the variance of the investigated stochastic process and power noise.

pDm|α0) 1/2

20

2.0

1.6

1.2

0.8

0.4

q2

0.0

1

2

5

10

20

50

FIGURE 15.10  Relative root-mean-square deviation of estimate as a function of the ratio between the variance of the investigated stochastic process and power noise.

where ρen(τ) is the envelope of normalized correlation function and the condition

 

fef << ν

(15.167)

is satisfied. We estimate the parameter ν. In the narrowband stochastic process case, the parameter ν plays a role of the central spectral density frequency. We assume that the stochastic process with the correlation function given by (15.166) is investigated in the white noise with the correlation function

 

0

 

(15.168)

Rn (τ) =

2 δ(τ),

 

where δ(τ) is the Dirac delta function and the observation time interval [0, T] is much longer than the correlation stochastic process interval.

In accordance with (15.111), the logarithm of likelihood ratio functional can be presented in the following form:

M(ν) = M1 (ν) − 0.5H(ν),

(15.169)

552

Signal Processing in Radar Systems

where M1(ν) and H(ν) are given by (15.102) and (15.104), respectively. Consider the second term in (15.169) taking into consideration that

 

0

 

 

Sn (ω) =

 

 

,

 

2

 

 

 

(15.170)

 

 

1

 

 

 

2

[ 1(ω − ν) + 1(ω + ν)],

Sx (ω; ν) =

2

σ

 

 

 

 

where 1(ω) is the Fourier transform of the normalized correlation function envelope ρen(τ). Introducing new variable ω′ = ω ν and taking into consideration that the investigated stochastic process is the narrowband process, we can write

H(ν) Tπ −∞ln 1 +

σ

2

 

 

 

 

1

(ω) dω = const.

(15.171)

0

 

 

 

Consequently, the logarithm of likelihood ratio functional accurate with the constant factor coincides with the output signal

M(ν) = TT

Ry (τ)ϑ(τ; ν)dτ.

(15.172)

0

 

 

Taking into consideration (15.106), (15.109), and the fact that the stochastic process narrowband process, we obtain

 

σ2

[ 1(ω − ν) + 1(ω + ν)]exp{jωτ}

 

 

ϑ(τ; ν) =

 

σ2[ 1(ω − ν) + 1(ω + ν)]+ 0

dω = 1

(τ)cos ντ,

π 0

 

 

−∞

 

 

 

where

ξ(t) is the

(15.173)

 

 

2

1 (ω)exp{jωτ}

 

 

1

(τ) =

 

 

dω.

(15.174)

π 0

σ2 1(ω) + 0

 

 

 

−∞

 

 

 

Thus, the estimation of parameter ν can be carried out by position of absolute maximum of the function

T

 

 

(τ) cos ντdτ,

(15.175)

M1(ν) = TRy

(τ) 1

0

 

 

 

 

where Ry (τ) is the correlation function estimate of the total process given by (15.103).

Define the bias and variance of estimate of the parameter ν limiting only by the first approximation. Under this approximation, the estimate will be unbiased and, in accordance with (15.143) and (15.150), the variance of estimate can be presented in the following form:

Var{νm | ν0} =

 

 

 

 

 

 

.

(15.176)

 

 

d 1(ω) 2

 

 

4

 

dω

 

 

Tσ

 

 

 

 

 

 

 

 

dω

2

2

 

 

 

 

 

−∞

 

[σ

1 (ω) + 0 ]

 

Соседние файлы в папке Diss