Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Diss / 10

.pdf
Скачиваний:
143
Добавлен:
27.03.2016
Размер:
18.05 Mб
Скачать

Estimate of Stochastic Process Frequency-Time Parameters

533

is the signal at the output of linear filter operating in stationary mode with impulse response given by

0

hk (t) =

ϕk (t)

if t < 0,

(15.53)

if t ≥ 0,

matched with the earlier-given orthogonal function φk(t). As we can see from (15.51), the mathematical expectation of estimate

 

T

 

 

 

1

 

 

 

 

α*k = ϕk (τ)

 

x(t)x(t − τ) dt dτ = ϕk (τ)R(τ)dτ = αk

(15.54)

 

0

T

0

 

0

 

 

 

 

is matched with the true value; in other words, the estimate of coefficients of expansion in series is unbiased.

The estimate variance of expansion in series coefficients can be presented in the following form:

Var{α*k} =

1

T 2

T T

0 0

1 T x(t1)x(t2 )yk (t1)yk (t2 ) dt1 dt2

T 0

2

x(t)yk (t) dt . (15.55)

As applied to the stationary Gaussian stochastic process, the stochastic process forming at the output of orthogonal filter will also be the stationary Gaussian stochastic process for the considered case. Because of this, we can write

 

1

T T

 

 

Var{α*k } =

 

∫∫[R(t2 t1)Ryk (t2 t1) + Rxyk (t2 t1)Ryk x (t2 t1)]dt1dt2 ,

(15.56)

T 2

 

 

0

0

 

 

where

 

 

 

 

 

 

 

 

∞ ∞

 

 

 

Ryk (τ) = ∫∫R(τ + ν − κ)ϕk (κ)ϕk (ν)dκ dν;

(15.57)

 

 

 

 

 

 

 

 

0

0

 

 

 

 

Rxyk (τ) = R(τ − ν)ϕk (ν)dν;

(15.58)

 

 

 

 

0

 

 

 

 

Ryk x (τ) = R(τ + ν)ϕk (ν)dν.

(15.59)

 

 

 

 

0

 

Introducing new variables t2 t1 = τ, t1 = t and changing the order of integration analogously as shown in Section 12.4, we obtain

 

2

T

 

 

 

τ

T T

 

Var{α*k } =

 

1

 

 

∫∫[R(τ)Ryk (τ) + Rxyk (τ)Ryk x (τ)]dτ.

(15.60)

T

T

 

 

0

 

 

 

 

 

0

0

 

534

 

 

 

Signal Processing in Radar Systems

 

x(t)

 

 

Integrator

α*k

 

 

 

 

 

 

yk(t)

h(t) = k(t)

FIGURE 15.4  One-channel measurer of coefficients αk.

Taking into consideration that

(α*k )2 = Var{α*k }+ α2k

(15.61)

and the condition given by (14.123), we can define the “integral” variance of correlation function estimate

 

 

 

 

v

 

*

(τ)} =

 

 

2

*

(15.62)

Var{Rv

Rv*(τ) −

Rv*(τ)

 

dτ = Var{αk }.

 

 

−∞

 

 

 

k = 0

 

As we can see from (15.62), the variance of correlation function estimate increases with an increase in the number of terms of expansion in series v. Because of this, we must take into consideration choosing the number of terms under expansion in series.

The foregoing formulae allow us to present the flowchart of correlation function measurer based on the expansion of this correlation function in series and the estimate of coefficients of this expansion in series. Figure 15.4 represents the one-channel measurer of the current value of the coefficient αk . Operation of measurer is clear from Figure 15.4. One of the main elements of block diagram of the correlation function measurer is the generator of orthogonal signals or functions (the orthogonal filters with the impulse response given by [15.53]). If the pulse with short duration τp that is much shorter than the filter constant time and amplitude τp1 excites the input of the orthogonal filter, then a set of orthogonal functions φk(t) are observed at the output of orthogonal filters.

The flowchart of correlation function measurer is shown in Figure 15.5. Operation control of the correlation function measurer is carried out by the synchronizer that stimulates action on the generator of orthogonal signals and allows us to obtain the correlation function estimate with period that is much longer compared to the orthogonal signal duration.

The functions using the orthogonal Laguerre polynomials given by (14.72) and presented in the following form

 

dk[tk exp{−αt}]

k

(−αt) (k!)2

 

Lk t) = exp{αt}

=

(15.63)

dtk

(k − µ)!(µ!)2

 

 

=0

 

 

are the simplest among a set of time. To satisfy (14.123), in this

orthogonal functions, where α characterizes a polynomial scale in case, the orthogonal functions φk(t) take the following form:

1

 

(15.64)

 

 

 

ϕk (t) = k! α exp{−0.5αt}Lk t).

 

Estimate of Stochastic Process Frequency-Time Parameters

535

0(f )

 

 

 

1(t)

 

v(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

x(t)

Generator α*k

 

α*0

α*1

α*v

 

Σ

 

 

 

 

1(τ)

 

 

 

 

0(τ)

 

v(τ)

 

 

 

 

 

 

 

 

 

Synchronizer

 

 

Generator

k(t), k(τ)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 15.5  Measurer of correlation function.

Carrying out the Laplace transform

ϕk ( p) = exp{− ptk (t)dt,

0

we can find that the considered orthogonal functions correspond to the transfer functions

 

2

 

0.5α

 

k

ϕk ( p) =

×

 

p − 0.5α

.

α

 

 

 

 

p + 0.5α p + 0.5α

 

(15.65)

(15.66)

The multistep filter based on RC elements, that is, α = 2(RC)−1, which has the transfer characteristic given by (15.66) accurate with the constant factor 2α−0.5 is shown in Figure 15.6. The phase inverter is assigned to generate two signals with equal amplitudes and shifted by phase on 90° and the amplifiers compensate attenuation in filters and ensure decoupling between them.

If the stationary stochastic process is differentiable ν times, the correlation function R(τ) of this process can be approximated by expansion in series about the point τ = 0:

v

 

 

τ2i

 

d2i R(τ)

 

 

 

R(τ) ≈ Rv (τ) =

 

 

 

×

 

.

(15.67)

dτ2i

τ = 0

(2i)!

i= 0

 

 

 

 

 

 

The approximation error of the correlation function is defined as

 

ε(τ) = R(τ) − Rv (τ).

 

 

 

(15.68)

The even 2ith derivatives of the correlation function at the point τ = 0 accurate within the coefficient (−1)i are the variances of ith derivatives of the stochastic process

 

 

 

 

2

 

 

i d2i R(τ)

 

 

diξ(t)

 

(1)

 

 

 

 

 

=

 

 

 

 

= Vari .

(15.69)

 

dτ

2i

 

 

 

 

 

dt

i

 

 

 

 

τ = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

536

Signal Processing in Radar Systems

Phase shifter

R

 

 

 

C

 

 

C

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amplifier

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

R

 

 

 

 

 

C

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amplifier

 

 

 

 

 

 

 

 

 

 

 

 

 

v–1(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amplifier

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R

R

 

 

 

 

 

C

 

 

 

 

 

 

 

 

C

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amplifier

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 15.6  Multistep RC filter.

As applied to the ergodic stochastic process, the coefficients of expansion in series given by (15.67) can be presented in the following form:

 

 

 

d2i R(τ)

 

 

 

1

T di x(t) 2

 

 

 

 

 

 

 

 

 

 

α

i

=

 

 

 

 

= (−1)i lim

 

 

 

 

dt.

(15.70)

dτ

2i

 

 

T

dt

i

 

 

 

 

T →∞

 

 

 

 

 

 

 

τ = 0

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the case when the observation time interval is finite, the estimate α*i of the coefficient αi is defined as

 

 

1

T

di x(t) 2

 

αi

= (1)i

 

 

 

 

dt.

(15.71)

T

dt

i

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The correlation function estimate takes the following form:

v

 

 

R (τ) = αi τ2i .

(15.72)

i=1

(2i)!

 

 

 

Flowchart of measurer based on definition of the coefficients of correlation function expansion in power series is shown in Figure 15.7. The investigated realization x(t) is differentiable ν times. The obtained processes yi(t) = dix(t)/dti are squared and integrated within the limits of the observation time interval [0, T] and come in at the input of calculator with corresponding signs. According to (15.72), the

Estimate of Stochastic Process Frequency-Time Parameters

537

 

x(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

d2x

 

 

 

 

 

dvx

 

 

 

 

 

 

 

 

dt

 

 

 

 

dt2

 

 

 

 

 

 

dtv

 

 

 

 

 

y0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y1

 

 

 

 

y2

 

 

yv

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[...]2

 

 

[...]2

 

[...]2

 

 

 

 

 

 

[...]2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

1

 

 

1

 

 

1

 

T

T

T

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Microprocessor

R*(τ)

FIGURE 15.7  Correlation function measurement.

correlation function estimate is formed at the calculator output. Define the statistical characteristics of the coefficient estimate αi . The mathematical expectation of the estimate αi has the following form:

 

 

i 1

T

di x(t) 2

 

αi

= (1)

 

 

 

 

 

 

dt.

(15.73)

 

T

 

 

 

dt

i

 

 

 

0

 

 

 

 

 

We can see that

di x(t) 2

2i R(t t

2

)

 

 

 

d2i R(τ)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

i 1 i

 

 

 

= (1)i

 

 

 

 

.

(15.74)

dt

i

 

 

 

 

dτ

2i

 

 

 

 

t1t2

 

 

 

t1 = t2 = t

 

 

 

 

τ = 0

 

 

 

 

 

 

 

 

 

 

 

 

 

An introduction of new variables t2 t1 = τ, t2 = t that the estimates of coefficients of expansion in estimates is

is made. Substituting (15.74) into (15.73), we see series are unbiased. The correlation function of

R =

 

 

 

,

(15.75)

ip

αi α p

 

αi

α p

 

where

 

1

T T

di x(t

) 2

d p x(t

) 2

 

αi α p = (1)(i+ p)

 

∫∫

 

 

1

 

 

 

 

1

 

 

dt1dt2.

(15.76)

T 2

dti

 

 

dt p

 

 

 

 

0

0

 

1

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

538

Signal Processing in Radar Systems

As applied to the Gaussian stochastic process, its derivative is Gaussian too. Because of this, we can write

di x(t1) 2 d p x(t1) 2

di x(t1) 2

d p x(t1) 2

 

(i+ p) x(t1)x(t2 ) 2

 

 

 

 

 

=

 

 

 

 

 

 

 

+ 2

tit p

 

dti

dt p

dti

dt p

 

 

1

 

2

 

 

 

1

 

 

2

 

 

 

1

2

 

 

 

 

 

 

=

Vari Varp + 2

 

(i+ p)R(t2

t1) 2

.

 

(15.77)

 

 

 

 

 

 

ti

t p

 

 

 

 

 

 

 

 

 

 

 

 

1

2

 

 

 

 

Substituting (15.77) into (15.76) and then into (15.75), we obtain

 

(i+ p)

2 T T

 

(i+ p) R(t

2

t ) 2

 

Rip = (1)

 

∫∫

 

1

 

dt1dt2.

 

T 2

tit p

 

 

 

 

0 0

 

1

2

 

 

 

 

 

 

 

 

 

 

 

Introducing new variables t2 t1 = τ, t2 = t and changing the order of integration, we obtain

 

4

T

 

 

τ d(i+ p) R(τ) 2

Rip =

 

1

 

 

 

 

 

dτ.

T

 

dτ

(i+ p)

 

0

 

 

T

 

 

 

(15.78)

(15.79)

If the observation time interval is much longer than the correlation interval of stochastic process and its derivatives, we can write

 

2

d(i+ p) R(τ) 2

 

Rip =

 

 

 

 

dτ.

(15.80)

T

dτ(i+ p)

 

 

 

 

 

 

 

−∞

 

 

 

 

 

As applied to the conditions, for which (15.80) is appropriate, the derivatives of the correlation function can be written using the spectral density S(ω) of the stochastic process:

 

d(i+ p)R(τ)

 

1

 

(i+ p)

 

 

 

 

 

=

 

 

 

( jω)

 

S(ω)exp{jωτ}dω .

(15.81)

 

dτ(i+ p)

 

 

 

 

 

 

 

 

 

 

−∞

 

 

 

 

Then

 

 

 

 

 

 

 

 

 

 

 

 

 

Rip

=

1

 

ω2(i+ p)S2 (ω)dω .

(15.82)

 

 

T π

 

 

 

 

 

 

 

 

−∞

 

 

 

The variance of the estimate αi of expansion in series coefficients can be presented in the following form:

Var{αi } =

1

ω4iS2 (ω)dω.

(15.83)

T π

 

 

−∞

 

Estimate of Stochastic Process Frequency-Time Parameters

539

Let us define the deviation of correlation function estimate from the approximated value, namely,

ε(τ) = Rv (τ) − Rv (τ).

(15.84)

Averaging ε(τ) by realizations of the investigated stochastic process, we can see that in the considered case ε(τ) = 0, which means the bias of correlation function estimate does not increase due to the finite observation time interval.

The variance of correlation function estimate can be presented in the following form:

Var{Rv (τ)} =

v v

 

τ2(i+ p) 4

T

 

 

 

 

 

τ d(i+ p)R(τ) 2

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

dτ.

(15.85)

∑∑(2i)!(2 p)! T

 

 

dτ

(i

+

p)

 

 

 

 

 

T

 

 

 

 

 

i=1 p=1

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

At T τcor, we can write

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v

v

 

 

 

 

 

 

 

 

 

 

 

 

Var{Rv (τ)} =

1

 

∑∑

τ2(i+ p)

 

ω2(i+ p)S2 (ω)dω.

(15.86)

T π

(2i)!(2 p

)!

 

 

 

 

 

i=1

p=1

 

 

 

 

−∞

 

 

 

 

 

 

Let the correlation function of the stochastic process be approximated by

R(τ) = σ2 exp{−α2τ2},

(15.87)

which corresponds to the spectral density defined as

 

π

 

ω

2

 

S(ω) = σ2

exp −

 

 

.

α

2

 

 

 

 

Substituting (15.88) into (15.86), we obtain

 

 

 

 

Var{Rv (τ)} =

σ4

v

v

[2(i + p) − 1]!!

(ατ)2(i+ p),

 

T α

∑∑

(2i)!(2 p)!

 

 

 

i=1

p=1

 

 

where

[2(i + p) − 1]!! = 1 × 3 × 5 × × [2(i + p) − 1].

(15.88)

(15.89)

(15.90)

As we can see from (15.89), the variance of correlation function estimate increases with an increase in the number of terms under correlation function expansion in power series.

15.3  OPTIMAL ESTIMATION OF GAUSSIAN STOCHASTIC PROCESS CORRELATION FUNCTION PARAMETER

In some practical conditions, the correlation function of stochastic process can be measured accurately with some parameters defining a character of its behavior. In this case, a measurement of correlation function can be reduced to measurement or estimation of unknown parameters of

540

Signal Processing in Radar Systems

correlation function. Because of this, we consider the optimal estimate of arbitrary correlation function parameter assuming that the investigated stochastic process ξ(t) is the stationary Gaussian stochastic process observed within the limits of time interval [0, T] in the background of Gaussian stationary noise ζ(t) with known correlation function.

Thus, the following realization

y(t) = x(t, l0 ) + n(t), 0 ≤ t T

(15.91)

comes in at the measurer input, where x(t, l0) is the realization of the investigated Gaussian stochastic process with the correlation function Rx(t1, t2, l) depending on the estimated parameter l; n(t) is the realization of Gaussian noise with the correlation function Rn(t1, t2). True value of estimated parameter of the correlation function Rx(t1, t2, l) is l0. Thus, we assume that the mathematical expectation of both the realization x(t, l0) and the realization n(t) is equal to zero and the realizations x(t, l0) and n(t) are statistically independent of each other. Based on input realization, the optimal receiver should form the likelihood ratio functional Λ(l) or some monotone function of the likelihood ratio. The stochastic process η(t) with realization given by (15.91) is the Gaussian stochastic process with zero mathematical expectation and the correlation function

Ry (t1, t2 , l) = Rx (t1, t2 , l) + Rn (t1, t2 ).

(15.92)

As applied to the investigated stochastic process η(t), the likelihood functional can be presented in the following form [5]:

 

1

T

T

1

 

 

 

∫∫y(t1 )y(t2 )[ϑn (t1, t2 ) − ϑx (t1, t2 ; l)]dt1dt2

 

(15.93)

Λ(l) = exp

2

2

H(l) .

 

0

0

 

 

 

 

 

 

 

We can write the derivative of the function H(l) in the following form:

 

dH(l)

T T

Rx (t1, t2

, l)

 

 

 

 

= ∫∫

l

 

ϑx (t1, t2 ; l)dt1dt2

(15.94)

 

dl

 

 

 

0

0

 

 

 

 

and the functions ϑx(t1, t2; l) and ϑn(t1, t2) can be found from the following equations:

 

T [Rx (t1, t2 , l) + Rn (t1, t2 )]ϑx (t1, t2 ; l)dt = δ(t2 t1 ),

(15.95)

0

 

 

 

 

 

 

 

 

T

Rn (t1, t2 n (t1, t2 )dt = δ(t2 t1 ).

(15.96)

0

 

 

 

 

 

 

Evidently, we can use the logarithmic term of the likelihood functional depending on the observed data as the signal at the receiver output

M1 (l) = 21 T T

y(t1 )y(t2 )ϑ(t1, t2 ; l)dt1dt2 ,

(15.97)

0

0

 

 

Estimate of Stochastic Process Frequency-Time Parameters

541

where

 

ϑ(t1, t2 ; l) = ϑn (t1, t2 ) − ϑx (t1, t2 ; l).

(15.98)

We suppose that the correlation intervals of the stochastic processes ξ(t) and ζ(t) are sufficiently small compared to the observation time interval [0, T]. In this case, we can use infinite limits of integration. Under this assumption, we have

ϑx (t1

, t2 ; l) = ϑx (t1 t2 ; l),

(15.99)

 

 

ϑn (t1

, t2 ) = ϑn (t1 t2 ),

 

 

 

 

and

 

 

ϑ(t1, t2 ; l) = ϑ(t1 t2 ; l).

(15.100)

Introducing new variables t2 t1 = τ, t2 = t and changing the order of integration, we obtain

 

1

T

T − τ

0

T

 

 

 

 

 

M1(l) =

2

ϑ(τ;l) y(t + τ)y(t)dtdτ + ϑ(τ;l)y(t

 

 

0

0

T

0

+ τ)y(t)dtdτ . (15.101)

Introducing new variables τ = −τ′, t= t + τ = t τ′ and taking into consideration that the correlation interval of stochastic process η(t) is shorter compared to the observation time interval [0, T], we can write

 

 

M1(l) = T T

Ry (τ)ϑ(τ; l)dτ,

(15.102)

0

 

 

 

 

 

where

 

 

 

 

 

Ry (τ) =

1

T− τ y(t)y(t + τ)dt

1

T

y(t)y(t − τ)dt

(15.103)

T

T

0

0

 

 

is the correlation function estimate of investigated input process consisting of additive mixture of the signal and noise.

Applying the foregoing statements to (15.94), we obtain

dH(l)

T Rx (τ; l)

 

 

 

= 2T l

ϑx (τ; l)dτ.

(15.104)

dl

 

 

0

 

 

Substituting (15.102) and (15.104) into (15.93), we obtain

 

T

1

 

 

 

 

 

(15.105)

Λ(l) = exp T Ry (τ)ϑ(τ;l)dτ −

2

H(l) .

 

0

 

 

 

 

 

 

542

Signal Processing in Radar Systems

In the case, when the observation time interval [0, T] is much longer compared to the correlation interval of the investigated stochastic process, we can use the spectral representation of the function given by (15.100)

ϑ(τ;l) =

1

 

[ϑn (ω) − ϑ x (ω ;l)]exp{jωτ}dω .

(15.106)

 

 

 

−∞

Then (15.104) takes the following form:

dH(l)

 

T T

Sx (ω; l)

 

 

 

=

 

l

ϑ x (ω ;l)dω .

(15.107)

dl

 

 

0

 

 

 

In (15.106) and (15.107), ϑn(ω), ϑx(ω; l), and Sx(ω; l) are the Fourier transforms of the corresponding functions ϑn(τ), ϑx(τ; l), and Rx(τ; l). Applying the Fourier transform to (15.95) and (15.96), we obtain

R (ω)ϑ (ω) = 1,

n n

ϑ x (ω ; l)[Sn (ω) + Rx (ω ; l)] = 1.

Taking into consideration (15.107) and (15.108), we can write

 

1

 

Sx (ω ;l)Sn−1(ω)

ϑ(τ;l) =

 

 

exp{jωτ}dω,

 

Sx (ω ;l) + Sn (ω)

 

 

 

−∞

 

 

 

 

 

 

 

 

 

 

 

T

 

 

Sx (ω; l)

H(l) =

 

 

 

ln 1

+

 

 

dω.

 

 

 

 

 

 

 

−∞

 

 

Sn (ω)

 

 

 

 

 

 

 

 

 

 

 

The signal at the optimal receiver output takes the following form:

T

M(l) = T Ry (τ)ϑ(τ;l)dτ − 12 H(l).

0

(15.108)

(15.109)

(15.110)

(15.111)

Flowchart of the optimal measurer is shown in Figure 15.8. This measurer operates in the following way. The correlation function Ry (τ) is defined based on the input realization of additive mixture of the signal and noise. This correlation function is integrated as the weight function with the signal ϑ(τ; l). The signals forming at the outputs of the integrator and generator of the function H(l) come

y(t)

 

 

R*y(τ)

 

 

 

 

 

 

 

 

 

Correlator

Integrator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Decision

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

device

 

 

Generator

 

 

 

 

 

Generator

 

 

 

 

 

 

 

 

θ(τ, l)

0.5H(l)

 

lm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 15.8  Optimal measurement of correlation function parameter.

Соседние файлы в папке Diss