Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Diss / 10

.pdf
Скачиваний:
143
Добавлен:
27.03.2016
Размер:
18.05 Mб
Скачать

Estimation of Probability Distribution and Density Functions of Stochastic Process

493

As we can see, the probability distribution function estimate is unbiased and the correlation function of the probability distribution function estimate at different levels x1 and x2 can be written in the following form:

 

1

N

 

RF (x1, x2 ) =

ηiηj F(x1)F(x2 ),

(14.35)

N 2

 

 

i=1, j=1

 

where

 

x1

x2

2

′ ′

′ ′

 

 

∫ ∫

 

ηi ηj = F[ x1, x2 ; (i j)Tp ] =

 

 

p

[x1, x2

;(i j)Tp]dx1dx2 .

(14.36)

−∞ −∞

The double sum in (14.35) can be presented in the following form:

N

N

 

ηi ηj = N ηi2

+ ηi ηj .

(14.37)

i =1, j =1

i =1, j =1

 

 

ij

 

The first term in (14.37) depends on the relationship between values x1 and x2 and can be presented in the following form:

2

NF(x1 )

if x1 x2 ,

 

(14.38)

N ηi

=

 

NF(x2 )

if x2 x1.

 

 

 

Actually, at x1 < x2, the probability of joint event that ξ ≤ x1 and ξ ≤ x2 is not equal to zero if and only if ξ ≤ x1. In this case, the inequality ξ < x2 is satisfied with the probability equal to unit. Therefore, the probability of the joint event is equal to the probability that ξ ≤ x1. For the second term in (14.37), we can introduce a new summation index k = i − j and change the order of summation. As a result, we obtain

N

i=1, j =1 ij

N −1

 

F[ x1, x2 ;(i j)Tp ] = 2(N k)F[ x1, x2 ; kTp ].

(14.39)

k =1

Substituting (14.38) and (14.39) into (14.35), the correlation function of the probability distribution function estimate F*(x) takes the following form:

F(x1 )

+

2

 

N −1

k

 

 

 

 

1

 

 

N

N

 

 

 

 

 

N

 

 

 

 

 

k=1

 

 

 

 

RF (x1, x2 ) =

 

 

 

 

N −1

 

 

 

 

F(x2 )

+

2

 

k

 

 

 

 

1

 

 

 

N

 

 

 

 

 

 

N

 

N

 

 

 

 

 

k=1

 

 

 

 

F[ x1, x2 ; kTp ] F(x1 )F(x2 ),

x1 x2 ,

 

(14.40)

F[ x1, x2 ; kTp ] F(x1 )F(x2 ),

x1 x2 .

494

Signal Processing in Radar Systems

The variance of the correlation function of the probability distribution function estimate F*(x) of the stochastic process is defined based on (14.40) by substituting x1 = x2 = x:

Var{F (x)} =

F(x)

+

2

N −1

1

k

F[x, x; kTp ] F2 (x).

(14.41)

 

 

 

 

 

N

 

 

 

 

N

 

 

N

 

 

 

 

 

 

k=1

 

 

 

 

 

 

If samples are uncorrelated, then the correlation function given by (14.40) is simplified since at k 0

F[ x1, x2 ; kTp ] = F(x1 )F(x2 ).

 

(14.42)

As a result, we obtain

 

 

 

 

 

 

 

F(x1 )[1 F(x2 )]

,

x1

x2 ,

 

 

 

 

N

RF (x1, x2 ) =

 

 

 

(14.43)

 

F(x2 )[1 F(x1 )]

 

 

 

 

,

x1

x2 .

 

 

 

 

N

 

 

 

 

 

In doing so, the variance of the probability distribution function estimate F*(x) of the stochastic process takes the following form:

Var{F (x)} =

F(x)[1 − F(x)]

.

(14.44)

 

 

N

 

As we can see from (14.44), the variance of the probability distribution function estimate F*(x) of the stochastic process depends essentially on the level x and reaches the maximum

Varmax{F (x)} =

1

(14.45)

4N

 

 

at the level x corresponding to the condition F(x) = 0.5.

In addition to the finite observation time period of the realization x(t) of continuous ergodic process ξ(t), the characteristics of the probability distribution function estimate F*(x) of the stochastic process depends also on the stability of the threshold level that can possess a random component characterized by the value δ, i.e., instead of the level x we use the level x + δ in practice. Then, the obtained characteristics of the probability distribution function estimate F*(x) of stochastic process are conditional, and to obtain the unconditional characteristics of the probability distribution function estimate F*(x) of stochastic process, there is a need to employ an averaging by all possible values of the random variable δ. We assume that the correlation interval of the random variable δ is much more in comparison with the observation time interval [0, T]. Consequently, we can think that the random variable δ does not change during measurement time of the probability distribution function estimate F*(x) of stochastic process and has the same statistical characteristics for all possible values x. Additionally, it is natural to suppose that random variations of the threshold are negligible and a difference between F(x + δ) and F(x) is very small in average sense. In this case, the probability distribution function F(x + δ) can be expanded in Taylor series about a point x and can be limited by the first three terms of expansion:

F(x + δ) ≈ F(x) + δp(x) + 0.5δ2 dp(x) .

(14.46)

dx

 

Estimation of Probability Distribution and Density Functions of Stochastic Process

495

Averaging (14.46) by realizations of the random variable δ, we obtain

 

F(x + δ) ≈ F(x) + Eδ p(x) + 0.5Dδ

dp(x)

(14.47)

dx ,

 

where Eδ and Dδ are the mathematical expectation and dispersion of random variations of the threshold value x. Based on (14.27) and (14.34), we obtain that the random variations of the threshold level lead to the bias of the probability distribution function estimate F*(x) of stochastic process:

b[F (x)] = Eδ p(x) + 0.5Dδ

dp(x) .

(14.48)

 

dx

 

Naturally, the presence of random variable δ leads to an increase in the variance of the probability distribution function estimate F*(x) of stochastic process.

14.3  VARIANCE OF PROBABILITY DISTRIBUTION FUNCTION ESTIMATE

14.3.1  Gaussian Stochastic Process

The two-dimensional pdf of a Gaussian stochastic process with zero mathematical expectation is defined in the following form:

 

 

; τ) =

1

 

x12 − 2 (τ)x1x2 + x22

,

(14.49)

p2

(x1, x2

 

 

exp

 

 

 

 

 

2πσ2 1

2 (τ)

2

[1 −

2

(τ)]

 

 

 

 

 

 

 

 

 

where

σ2 is the variance

(τ) is the normalized correlation function of the investigated stochastic process

However, the written form of the two-dimensional pdf of Gaussian stochastic process with zero mathematical expectation in (14.49) does not allow us to obtain the formulas for the variance of the probability distribution function estimate F*(x) that are convenient for further analysis. Therefore, we present the two-dimensional pdf of Gaussian stochastic process with zero mathematical expectation in the form of a series with respect to derivatives from the Gaussian Q-function, i.e., Q(x) given by (12.157), where we assume that the mathematical expectation is equal to zero (E = 0):

 

 

 

 

 

1

 

 

 

 

 

x

 

 

 

 

 

x

2

 

v (τ)

 

 

 

 

 

 

 

 

 

p2 (x1, x2; τ) =

 

 

1 Qv+1

 

1

 

1

Qv+1

 

 

 

 

.

 

 

 

 

 

(14.50)

 

σ

2

 

 

 

 

v!

 

 

 

 

 

 

 

 

 

 

 

v=0

 

 

 

 

 

σ

 

 

 

 

σ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substituting (14.50) into (14.30), we obtain

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

x

2

 

 

 

 

 

 

x

 

 

 

 

x

2

 

v (τ)

 

F(x1, x2

; τ) = 1 Qv+1

 

1

1

Qv+1

 

 

 

+ 1

Qv+1

 

1

1

Qv+1

 

 

 

 

 

.

 

 

 

 

 

 

v!

 

 

 

σ

 

 

 

σ

 

v=0

 

 

 

 

σ

 

 

 

σ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(14.51)

Taking into consideration that in the case of Gaussian stochastic process

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F(x) = 1 Q

 

 

 

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(14.52)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

σ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

496

Signal Processing in Radar Systems

the correlation function given by (14.32) and the variance given by (14.33) of the probability distribution function estimate F*(x) take the following form:

 

 

 

1

1 Qv

x1

1 Qv

x2

 

2

 

T

1

τ

 

R (x , x

) =

 

 

 

v (τ)dτ;

 

 

 

 

 

 

 

 

 

 

 

F

1 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v!

 

 

σ

 

 

 

 

σ T

 

T

 

 

 

 

v=0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

Var{F (x)} =

1

1 Qv

x 2

 

2 T

1

τ

v (τ)dτ.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v!

 

 

σ

 

 

 

T

 

 

 

 

 

 

 

 

 

 

v=0

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

Since

Qv (−z) = Qv (z) , v = 1, 2,…,

(14.53)

(14.54)

(14.55)

based on (14.54), we obtain that the variance Var{F*(x)} of the probability distribution function estimate F*(x) is the even function with respect to the threshold level x.

Table 14.1 represents the values of coefficients

av =

1

[1 − Qv (z)]2

(14.56)

v!

as a function of the normalized level

z =

x

(14.57)

 

 

σ .

 

TABLE 14.1

Values of the Coefficients av = (1/v!)[1 − Qv(z)]2 as a Function of the Normalized Level z = x

z

v = 1

v = 2

v = 3

v = 4

v = 5

v = 6

v = 7

0.0

0.15915

0.00000

0.02653

0.00000

0.01193

0.00000

0.00710

0.1

0.15757

0.00079

0.02574

0.00059

0.01135

0.00048

0.00662

0.2

0.15291

0.00306

0.02349

0.00223

0.00971

0.00181

0.00530

0.3

0.14543

0.00605

0.02007

0.00462

0.00738

0.00362

0.00353

0.5

0.12395

0.01549

0.01162

0.00976

0.00252

0.00679

0.00054

0.7

0.09750

0.02389

0.00423

0.01254

0.00007

0.00709

0.00025

1.0

0.05854

0.02927

0.00000

0.00976

0.00195

0.00293

0.00297

1.5

0.01678

0.01887

0.00436

0.00088

0.00413

0.00031

0.00157

2.0

0.00291

0.00583

0.00437

0.00048

0.00061

0.00131

0.00007

2.5

0.00031

0.00096

0.00141

0.00084

0.00005

0.00019

0.00035

3.0

0.00002

0.00009

0.00021

0.00026

0.00015

0.00001

0.00003

3.5

0.00000

0.00000

0.00001

0.00003

0.00004

0.00002

0.00000

4.0

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

0.00000

 

 

 

 

 

 

 

 

Estimation of Probability Distribution and Density Functions of Stochastic Process

497

As we can see from Table 14.1, the av defining the variance of the probability distribution function estimate F*(x) of Gaussian stochastic process decreases with an increase in the number v. Taking into consideration that in the case of stochastic processes the factor

cv =

2

T

1

τ

v

(τ)dτ

(14.58)

 

 

 

 

 

T

 

 

 

 

T

 

 

 

 

 

0

 

 

 

 

 

 

 

decreases also with an increase in the number v, in practice, we can be limited by the first 5–7 terms of series expansion.

When the observation time interval [0, T] is much more than the correlation interval of stochastic process, as earlier, the coefficients cv can be approximated by

cv

2

T

v (τ)dτ.

(14.59)

T

0

 

 

If, in addition to the condition T τcor we assume that T ∞, then, according to (14.59) and (14.54) the variance of the probability distribution function estimate F*(x) of the Gaussian stochastic process tends to approach zero, which should be expected; i.e., the probability distribution function estimate F*(x) of the Gaussian stochastic process is consistent.

In the case when the observation time is lesser than the correlation interval of the stochastic process, i.e., T < τcor, we have

 

Var{F (x)} av.

(14.60)

v=1

Formula (14.60) characterizes the maximal variance of the probability distribution function estimate F*(x) of Gaussian stochastic process.

As an example, consider the Gaussian stochastic process with the exponential normalized correlation function given by (12.13). Substituting (12.13) into (14.58), we obtain

cv =

2

[exp(− pv) + pv − 1],

(14.61)

p2v2

where p is given by (12.140). In doing so, if p 1, then

cv

2

.

(14.62)

 

 

pv

 

The root-mean-square deviation σ{F*(x)} of measurements of the probability distribution function of Gaussian stochastic process as a function of the normalized level z for various values of p is presented in Figure 14.3. As we can see from Figure 14.3, the maximal values of σ{F*(x)} are obtained at the zero level.

The maximal value of σ{F*(x)} as a function of the parameter p given by (12.40) is shown in Figure 14.4. As we can see from Figure 14.4 and based on (14.54) and (14.61), the variance of the probability distribution function estimate F*(x) decreases linearly as a function of p starting from p 10. This graph allows us to define the minimal required time to observe a realization of the

498

 

 

 

Signal Processing in Radar Systems

 

σ{F*(x)}

 

 

 

 

0.4

1

1

p << 1

 

2

p = 0.2

 

 

2

 

 

3

p = 2.0

 

 

 

3

 

0.3

4

p = 10

 

 

 

 

0.2

 

5

p = 20

 

4

 

 

 

 

0.1

5

 

 

 

 

 

 

 

 

 

 

 

 

 

z

 

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

FIGURE 14.3  Root-mean-square deviations σ{F*(x)} as a function of the normalized level z. Gaussian stochastic process.

1.0

 

σ{F*(0)}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

 

0.01

 

 

 

 

 

 

 

 

0.001

 

 

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

10–2

10–1

1.0

10

102

103

104

 

 

FIGURE 14.4  Maximal value of σ{F*(0)} as a function of p. Gaussian stochastic process.

Gaussian stochastic process when the maximal value of variance is not more than the previously given definite magnitude. For example, if we require that σ{F*(x)} 0.01, the condition p 3000 should be satisfied.

When we investigate a discrete Gaussian stochastic process, the variance of the probability distribution function estimate F*(x) is defined as

 

1

 

x

x

1

 

 

Var{F (x)} =

 

1

Q

 

Q

 

 

+

 

1

 

 

 

 

 

N

 

σ

 

σ

v=1

v!

 

 

 

 

 

 

 

 

 

 

 

 

 

where

cv

=

2

N −1

1

k

v

(kTp ).

 

 

 

 

 

 

 

 

 

N

 

 

N

 

 

 

 

 

k=1

 

 

 

 

 

 

Qv x 2 c,vσ

As applied to the exponential normalized correlation function

 

 

 

v (kTp ) = exp{−α | kTp |},

(14.64) can be presented in the following form [2]:

cv = 2

× exp{−vαTp}{1 − exp{−vαTp} + N −1{exp{−vαTp} − 1}} .

N

 

{1 − exp{−vαTp}}2

 

 

 

(14.63)

(14.64)

(14.65)

(14.66)

Estimation of Probability Distribution and Density Functions of Stochastic Process

499

TABLE 14.2

Normalized Correlation Function (14.68) as a Function

of the Normalized Threshold Level z

 

 

 

 

z1

 

 

 

z2

−1.5

−1.0

−0.5

0

0.5

1.0

1.5

−1.5

1.00

0.62

0.40

0.27

0.18

0.12

0.07

−1.0

0.62

1.00

0.65

0.43

0.29

0.19

0.12

−0.5

0.40

0.65

1.00

0.67

0.45

0.29

0.18

0

0.27

0.43

0.67

1.00

0.67

0.43

0.27

0.5

0.18

0.29

0.45

0.67

1.00

0.65

0.40

1.0

0.12

0.19

0.29

0.43

0.65

1.00

0.62

1.5

0.07

0.12

0.18

0.27

0.40

0.62

1.00

 

 

 

 

 

 

 

 

At N 1

cv 2

×

 

exp{−vαTp} .

(14.67)

 

 

 

 

 

 

N

 

1 − exp{−vαTp}

 

 

 

 

In the case of uncorrelated samples, we have cv= 0. As a result, (14.63) coincides with (14.44). Thus, (14.63) demonstrates that the variance of the probability distribution function estimate

F*(x) of stochastic process by correlated samples increases in comparison with the variance of the probability distribution function estimate F*(x) of stochastic process by uncorrelated samples of the same sample size N.

Table 14.2 represents the normalized correlation function

ρ(x1, x2 ) =

RF (x1, x2 )

(14.68)

Var{F (x1)}Var{F (x2 )}

 

 

of the probability distribution function estimate F*(x) of stochastic process for various values of the threshold level z computed based on (14.43) in the case of uncorrelated samples. As we can see from Table 14.2, there is a high correlation between the probability distribution function estimations F*(x) of stochastic process.

14.3.2  Rayleigh Stochastic Process

Two-dimensional pdf of Rayleigh stochastic process ξ(t) can be presented in the following form [1]:

 

 

 

x1x2

 

 

 

p2 (x1, x2; τ) =

 

 

 

 

 

exp −

4

[1

2

(τ)]

 

σ

 

 

 

x12 + x22

 

 

x1x2

×

 

(τ)

 

,

(14.69)

 

 

 

 

I0

 

 

 

 

 

 

 

 

2

[1 −

2

 

σ

2

1 −

2

 

 

(τ)]

 

 

 

 

(τ)

 

 

where

I0(z) is the zero-order Bessel function of imaginary argument

σ2 and (τ) are the parameters of the pdf associated with the initial second moment ξ(t) and the normalized correlation function ρ(τ) of Rayleigh stochastic process by (12.165)

500

 

 

 

Signal Processing in Radar Systems

Introduce new variables

 

 

 

 

 

y1 =

x12

and y2 =

x22

.

(14.70)

2

2

 

 

 

 

New top integration limits in (14.30) correspond to z1 = y1 and z2 = y2. New two-dimensional pdf can be presented by expansion in series using the orthogonal Laguerre polynomials [2]:

p2 (x1, x2; τ) = exp(− y1 y2 )Lv (y1)Lv (y2 ) 2v (τ), (14.71) (v!)2

v=0

where Lv(y) is the Laguerre polynomial satisfying the following definition:

 

dv[y exp(− y)]

v

v!

 

Lv (y) = exp{y}

= (−1) Cv

y ,

dy

v

µ!

 

 

=0

 

 

 

 

 

 

where

Cv =

v!

;

 

µ!(v − µ)!

 

 

L0 (y) = 1;

L1(y) = − y + 1.

Substituting (14.71) into (14.30), we obtain

(14.72)

(14.73)

(14.74)

(14.75)

2v (τ)

z1

z2

F(x1, x2; τ) = [1 − exp(−z1)][1 − exp(−z2 )] +

exp(− y1)Lv (y1)dy1

exp(− y2 )Lv (y2 )dy2 ,

 

(v!)2

v=1

 

 

 

 

0

0

 

 

 

 

 

 

(14.76)

where

 

 

 

 

 

 

 

 

2

 

 

 

 

z1 =

x1

;

 

 

2

 

 

 

 

2σ

 

(14.77)

 

 

 

 

 

 

 

 

2

 

 

 

 

z2 =

x2

.

 

 

2

 

 

 

 

 

2σ

 

 

Based on Ref. [2], we can write

exp(− y)Lv (y)dy = 0;

(14.78)

 

0

 

Estimation of Probability Distribution and Density Functions of Stochastic Process

exp(− y)Lv (y)dy = exp(−β)[Lv (β) − vLv−1(β)].

0

Taking into consideration (14.77) through (14.79), we can write

F(x1, x2; τ) = [1 − exp(−z1)][1 − exp(−z2 )]

+ 2v (τ) exp(−z1 z2 )[vLv−1(z1) − Lv (z1)][vLv−1(z2 ) − Lv (z2 )]. (v!)2

v=1

501

(14.79)

(14.80)

Substituting (14.80) into (14.32) and taking into consideration that in the case of the Rayleigh stochastic process

 

x2

 

 

 

F(x) = 1 exp

 

 

 

,

(14.81)

2σ

2

 

 

 

 

 

we obtain the correlation function of the probability distribution function estimations F*(x) of Rayleigh stochastic process at various levels:

dv

 

 

2

 

2

 

 

 

 

 

2

 

 

 

2

 

 

2

 

 

2

 

RF (x1, x2 ) =

 

exp

x1

+ x2

 

 

 

 

 

 

 

x1

 

 

Lv

x1

 

 

 

x2

 

 

Lv

x2

 

 

 

 

 

 

 

 

vLv−1

 

 

 

 

 

 

 

 

vLv−1

 

 

 

 

 

 

,

(v!)

2

2σ

2

 

2σ

2

2σ

2

2σ

2

2σ

2

v=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(14.82)

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dv

=

2

T

1

 

τ

 

2v

(τ)dτ.

 

 

 

 

 

 

 

 

(14.83)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Substituting into (14.82) x1 = x2 = x, we obtain the variance of the probability distribution function estimations F*(x) of Rayleigh stochastic process:

d

 

 

 

x

2

 

 

x

2

 

 

x

2

 

2

 

 

 

 

 

 

Var{F (x)} =

v

 

 

 

 

 

 

 

 

 

 

 

 

exp

 

 

vLv−1

 

 

 

 

 

Lv

 

 

 

.

(14.84)

(v!)

2

σ

2

2σ

2

2σ

2

v=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When T τcor, where τcor is the correlation interval, in the case of stochastic process with the normalized correlation function (τ), we obtain

dv

2

T

2v (τ)dτ.

(14.85)

T

0

 

 

If, in addition to the condition T τcor, we suppose that T ∞, then based on (14.85) we can conclude that dv 0 and the variance of the probability distribution function estimations F*(x) of

502

Signal Processing in Radar Systems

Rayleigh stochastic process tends to approach zero and is consistent for the considered case. The variance of the probability distribution function estimation F*(x) of Rayleigh stochastic process also tends to approach zero at z = 0 (x = 0) and z ∞ (x ∞), as in both cases the coefficients

 

1

 

 

x

2

 

 

x

2

 

 

x

2

2

 

 

 

 

 

 

 

 

 

 

 

bv =

 

 

exp

 

 

vLv−1

 

 

 

 

 

Lv

 

 

 

 

(14.86)

(v!)

2

σ

2

2σ

2

2σ

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tend to approach zero for any values of the ratio T/τcor.

When T τcor, the variance of the probability distribution function estimations F*(x) of Rayleigh stochastic process can be presented in the following form:

 

Var{F (x)} = bv.

(14.87)

v=1

Table 14.3 represents the coefficients bv as a function of the number v and the normalized level z. As we can see from Table 14.3, the coefficients bv decrease slowly and nonmonotonically with an increase in the number v. In practice, we can be limited by 4–5 terms of the sum given by (14.84).

As an example, we consider the Rayleigh stochastic process with the normalized correlation function (τ) given by (12.13). In this case, we can write

dv =

exp{−2 pv} + 2 pv − 1

.

(14.88)

 

 

 

 

2 p2v2

 

When p = T/τcor 1, we have

 

 

dv

1

.

(14.89)

 

 

 

 

pv

 

TABLE 14.3

Coefficients bv as a Function of the Number v

and Normalized Level z

z

v = 1

v = 2

v = 3

v = 4

v = 5

0.0

0.00000

0.00000

0.00000

0.00000

0.00000

0.1

0.00010

0.00010

0.00009

0.00010

0.00009

0.2

0.00148

0.00143

0.00137

0.00131

0.00131

0.3

0.00673

0.00615

0.00560

0.00512

0.00470

0.4

0.01850

0.01575

0.01320

0.01100

0.00920

0.5

0.03750

0.02900

0.02200

0.01620

0.01190

0.7

0.09000

0.05120

0.02720

0.01295

0.00519

1.0

0.13469

0.03360

0.00360

0.00024

0.00346

1.2

0.11640

0.00912

0.01000

0.00705

0.00827

1.5

0.05620

0.00088

0.00935

0.00576

0.0083

2.0

0.00535

0.00535

0.00061

0.00060

0.00112

2.5

0.00014

0.00065

0.00020

0.00014

0.00002

3.0

0.00000

0.00002

0.00004

0.00001

0.00002

3.5

0.00000

0.00000

0.00000

0.00000

0.00000

 

 

 

 

 

 

Соседние файлы в папке Diss