Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Bilety_po_bekhe_1_1_1.doc
Скачиваний:
835
Добавлен:
27.03.2016
Размер:
739.84 Кб
Скачать

16. Биологическое окисление (бо) совокупность окислительно-восстановительных реакций, которые протекают во всех живых клетках.

Субстрат БО – вещество, способное отдавать электрон. (Любые вещества, способные вступать в реакции окисления).

Биохимик В.И. Палладин создал теорию дыхания, как совокупности ферментативных процессов. Он предположил, что окисление субстратов может происходить в 2 фазы:

1). Анаэробная фаза. В этой фазе особые вещества хромогены (R) отщепляют Н от субстратов и восстанавливаются (RH2).

2). Аэробная фаза. Восстановленные хромогены RH2 передают Н на О2.

Субстрат БО - в-во, способное отдавать электроны (в-ва, способные вступать в реакции окисления).

Пути использования кислорода в клетке

В настоящее время выделено 4 основные пути использования кислорода в организме:

1. Оксидазный путь - окислительное фосфорилирование. Протекает в митохондриях, является основным источником АТФ в аэробных тканях. Потребляет 90% кислорода.

2. Монооксигеназный путь. Обеспечивает включение 1 атома кислорода в молекулу субстрата. Используется для синтеза новых веществ (стероидные гормоны), обезвреживания ксенобиотиков и токсических продуктов обмена в митохондриях и ЭПР.

3. Диоксигеназный путь. Обеспечивает включение молекулы кислорода в молекулу субстрата. Используется для деградации АК и синтеза новых веществ.

4. Пероксидазный и радикальный пути. Кислород участвует в образовании перекисей и активных радикалов, которые необходимы в пероксисомах для внутриклеточного пищеварения, разрушения макрофагами бактерий, вирусов, регуляции метаболизма и т.д. Перекиси и активные кислородные радикалы оказывают также повреждающее воздействие на структуры клеток и тканей, активируя ПОЛ. Разрушение перекисей и инактивация свободных радикалов осуществляется с помощью ферментативной и неферментативной антиокидантной системы.

17. Оксидазный путь потребления кислорода протекает в митохондриях, потребляет 90% о2 и обеспечивает процесс окислительного фосфорилирования.

Окислительным фосфорилированием называют синтез АТФ из АДФ и Н3РО4 за счет энергии движении электронов по дыхательной цепи.

Окислительное фосфорилирование является основным источником АТФ в аэробных клетках.

МЕХАНИЗМ ОКИСЛИТЕЛЬНОГО ФОСФОРИЛИРОВАНИЯ

Окислительное фосфорилирование состоит из процессов окисления и фосфорилирования, которые между собой сопряжены.

Процесс окисления происходит при движении электронов по дыхательной цепи от субстратов тканевого дыхания на кислород. Дыхательная цепь окислительного фосфорилирования состоит из 4 белковых комплексов, встроенных во внутреннюю мембрану митохондрий и небольших подвижных молекул убихинона и цитохрома С, которые циркулируют в липидном слое мембраны между белковыми комплексами.

Комплекс I – НАДН2 дегидрогеназный комплекс

Комплекс II – СДГ.

Комплекс III – Комплекс b

Комплекс IV – Цитохромоксидазный комплекс

Коэнзим Q (убихинон

Компоненты дыхательной цепи располагаются в мембране в порядке повышения их редокс-потенциала. При переходе е- от комплекса с низким редокс-потенциалом к комплексу с более высоким редокс-потенциалом происходит выделение свободной энергии. При окислении 1 НАДН2 выделяется 220 кДж/моль свободной энергии.

I, III и IV комплексы дыхательной цепи используют 65-70% этой свободной энергии для переноса Н+ из матрикса митохондрий в межмембранное пространство, 30-35% свободной энергии рассеивается в виде тепла.

Соседние файлы в предмете Биохимия