Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекция №7 (алгебра).doc
Скачиваний:
18
Добавлен:
26.03.2016
Размер:
534.53 Кб
Скачать

1.22. Достаточные признаки сходимости числовых рядов.

Сходимость и расходимость числовых рядов с положительными членами можно установить с помощью сравнения его с другим («эталонным») рядом, о котором заранее известно, сходится он или расходится. Такое сравнение производится на основе двух теорем сравнения.

Теорема 1. Пусть даны два знакоположительных ряда и . Если для всех выполняется неравенство , то из сходимости ряда следует сходимость ряда , из расходимости ряда следует расходимость ряда .

Доказательство. Обозначим -e частичные суммы рядов и соответственно через и . Суммируя неравенства получаем, что .

Пусть ряд сходится и . Члены ряда положительны, поэтому . Используя неравенство , получаем . Последовательность монотонно возрастает, поскольку >0, и ограничена сверху числом , следовательно, имеет предел , т. е. ряд сходится.

Пусть теперь знакоположительный числовой ряд расходится: . Тогда, с учетом неравенства получаем , т. е. ряд расходится.

Теорема 1 имеет место и в том случае, когда неравенство выполняется не для всех членов рядов и , а начиная с некоторого номера.

Пример 9. Исследовать на сходимость ряд .

Решение: Сравним данный ряд с рядом геометрической прогрессии , о котором заранее известно, что он сходится, так как является бесконечно убывающей геометрической прогрессией. Поскольку для любого выполняется неравенство , то из сходимости геометрической прогрессии следует и сходимость ряда . Следовательно, данный ряд сходится.

Пример 10. Исследовать сходимость ряда

Решение. Так как , то необходимое условие сходимости ряда выполнено. Применим первый признак сравнения. Поскольку , имеем и, следовательно,. Так как ряд расходится как обобщенный гармонический ряд с , то по первому признаку сравнения расходится и исходный ряд.

Теорема 2. Пусть даны два знакоположительных ряда и . Если существует конечный, предел , то ряды и сходятся или расходятся одновременно.

Доказательство. Пусть существует конечный предел, тогда

или

, .

Если ряд сходится, то из левого неравенства и первой теоремы сравнения следует, что и рядтоже сходится. Если ряд расходится, то из правого неравенства и первой теоремы сравнения вытекает, что и ряд тоже расходится. Аналогично, если известна сходимость или расходимость ряда можно сделать вывод о поведении

ряда

Пример 11. Исследовать сходимость ряда .

Решение. Здесь . Сравним ряд с гармоническим рядом, у которого : . Следовательно, данный ряд расходится по второму признаку сравнения.

Пример 12. Исследовать сходимость ряда

Решение. Так как , то необходимое условие сходимости ряда выполнено. Проверяем, что члены данного ряда положительны. Действительно, >0 при всех , так как . Имеем при Ряд сходится как обобщенный гармонический ряд с . Следовательно, в силу второго признака сравнения исходный ряд также сходится.

Пример 14. Исследовать сходимость ряда

Решение. Поскольку при , упрощаем выражение для : т. е. будем исследовать сходимость ряда и затем воспользуемся вторым признаком сравнения. Поскольку , вычисляем , учитывая, что : . Так как , то ряд сходится. Следовательно, по второму признаку сравнения сходится и исходный ряд.

Пример 15. Исследовать сходимость ряда .

Решение: Здесь . В качестве эталонного ряда сравнения возьмем расходящийся гармонический ряд с общим членом . Имеем . Следовательно, исходный ряд расходится.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]