Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции САПР.doc
Скачиваний:
30
Добавлен:
26.03.2016
Размер:
245.76 Кб
Скачать

Вопросы для самопроверки

1. В чем состоит задача линеаризации уравнения системы автоматического регулирования (САР)?

  1. Дайте понятия “устойчивой” и “неустойчивой” САР.

3. Что такое “принцип аргумента”?

4. Сформулируйте и поясните критерий устойчивости Найквиста-Михайлова для замкнутых систем.

5. Какие точки на годографе САР считаются “характерными”? Как они определяются?

6. Как влияет на устойчивость САР звено задержки?

7.Как влияет на устойчивость САР форсирующее звено?

  1. Как влияет на устойчивость САР интегрирующее звено?

  2. Для чего может использоваться в САР дополнительное интегрирующее звено?

лекция 4. ПАРАМЕТРИЧЕСКАЯ ОПТИМИЗЦИЯВ ЗАДАЧАХ ПРОЕКТИРОВАНИЯ РЭС

Основные понятия и определения

Оптимальное проектирование – это процесс принятия наилучших (оптимальных в некотором смысле) решений с помощью ЭВМ. Данная проблема возникает и требует решения на всех этапах проектирования и во многом определяет технико-экономическую эффективность и технологичность проектируемых изделий.

Большинство задач принятия решений можно сформулировать в терминах теории математического программирования, то есть в виде совокупности критериев качества и ограничений /1-8/.

В соответствии с общепринятыми обозначениями выделим управляемые (внутренние) параметры объекта проектирования X = x1, x2.,…,xn) и выходные параметры Y = ( y1,y2.,…,ym).

Как правило, при оптимизации целесообразно изменять не все внутренние параметры, а только те из них, которые оказывают наиболее существенное влияние на выходные параметры.

Выбор управляемых параметров осуществляют либо по результатам анализа чувствительности, либо в интерактивном режиме по желанию проектировщика / 2 /.

Для нахождения оптимальных решений должна быть известна математическая модель объекта проектирования, задающая зависимость выходных параметров Y от управляемых параметров X , адекватно описывающая работу объекта проектирования:

Y = F (X), (1.1)

где вектор F = (f1,f2.,…,fm) в качестве компонент может включать как функциональные, так и алгоритмические зависимости. В скалярном виде формула (1.1) примет вид:

Оптимизационная задача не может быть сформулирована при отсутствии математической модели объекта проектирования, при этом вид математической модели во многом определяет целесообразность и возможность применения того или иного метода.

На каждом этапе проектирования конструкции или технологии РЭС в начале работы приходится принимать решения в условиях неопределенности. Чаще всего это относится к построению или выбору варианта структуры объекта проектирования при в рамках блочно-иерархического подхода /2, 3,7,8/, то есть к задачам структурной оптимизации.

Выбор варианта структуры во многом снимает неопределeнность, что позволяет строить математическую модель (1.1), (1.2) и проводить на ее основе параметрическую оптимизацию, то есть подбор наилучшего набора значений управляемых параметров (например, номиналов индуктивностей, емкостей, резисторов, параметров активных элементов, координат компонентов на плате и др.), при которых выполняются ограничения (технические требования технического задания) и достигают своих экстремальных значений (максимума или минимума) критерии качества объекта проектирования (наиболее важные с точки зрения проектировщика схемные и конструктивные выходные параметры объекта проектирования, по которым оценивается его качество), например, частотные характеристики, коэффициент передачи, потребляемая и выходная мощности, габариты, длина соединительных проводников, перегрев, температура и т. п.). Если параметрическая оптимизация проходит достаточно с небольшими временными затратами (несложные устройства, использование упрощенных математических моделей, отсутствие жестеих требований на точность результатов и т. д.), может быть выполнен некоторый перебор различных структур построения проектируемого объекта, т.е. осуществлена структурная оптимизация устройства.

Решение задачи проектирования радиоэлектронного устройства с оптимальными характеристиками с использованием методов параметрической оптимизации /2,8/ включает три этапа: 1 – компьютерное моделирование устройства; 2 – составление целевой функции с выбором критериев оптимальности; 3 – поиск экстремума полученной целевой функции и определение оптимальных внутренних параметров устройства.

Моделирование (анализ) РЭС требует на соответствующих наличия математических моделей и проводится в основнов численными методами /8/. Главным критерием моделирования наряду с необходимой точностью и адекватностью модели является быстродействие, скорость расчета на ЭВМ выходных параметров устройства.

Этап составления целевой функции при оптимизации устройства является самым творческим и неформальным /2,7,8/. Целевая функция строится на основе выходных параметров устройства (характеристик), которые необходимо оптимизировать.

Таким образом, оптимальное проектирование РЭС сводится к составлению или выбору целевой функции, многократному анализу характеристик (выходных параметров) устройств и затем минимизации или максимизации целевой функции с применением в различных методов оптимизации, выбор конкретного из которых обусловлен спецификой данной решаемой задачи.