Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы по терверу по 37.docx
Скачиваний:
1486
Добавлен:
24.03.2016
Размер:
4.75 Mб
Скачать

14. Функция распределения случайной величины, ее определение, свойства и график. Примеры.

Числовая величина, принимающая то или иное значение в результате реализации испытания случайным образом, называется случайной величиной.

Если x - дискретная случайная величина, принимающая значения x1 < x2 < … < xi < … с вероятностями p1 < p2 < … < pi < …, то таблица вида

x1

x2

xi

p1

p2

pi

называется распределением дискретной случайной величины.

Функция распределения случайной величины, с таким распределением, имеет вид

Свойства функции распределения.

1. .

Доказательство: Это утверждение следует из того, что функция распределения – это вероятность, а как известно,.

2.Функция распределения случайной величины есть неубывающая функция на всей числовой оси.

Доказательство:Пусть х1<x2. Докажем, чтоF(x1)F(x2). Пусть событие А=(Х<x1),B=(x1Х<x2). Тогда А+В=(Х<x2). События А и В несовместны, следовательно по теореме сложения Р(А+В)=P(А)+P(В). То есть Р(Х<x2) =Р(Х<x1)+Р(x1Х<x2). Другими словамиF(x2)=F(x1)+ Р(x1Х<x2).(3)

Так как Р(x1Х<x2)как вероятность невозможного события Х.как вероятность достовероного события Х.

4. Р(х1Х<x2)=F(x2)-F(x1).(4)

Доказательство: это непосредственно следует из формулы (3).

Пример: Найти вероятность того, что случайная величина Х примет значение в интервале [2; 5).

Решение: По формуле Р(х1Х<x2)=F(x2)-F(x1).(4)

Р(2Х<5)=F(5)-F(2)=1-2/3=1/3.(4).

Ответ :1/3.

15. Функция распределения дискретной случайной величины. Примеры.

если  - дискретная случайная величина, принимающая значения x< x2 < … < xi < … с вероятностями p< p2 < … < pi < …, то таблица вида

x1

x2

xi

p1

p2

pi

называется распределением дискретной случайной величины.

Функция распределения случайной величины, с таким распределением, имеет вид

У дискретной случайной величины функция распределения ступенчатая. Например, для случайного числа очков, выпавших при одном бросании игральной кости, распределение, функция распределения и график функции распределения имеют вид:

1

2

3

4

5

6

1/6

1/6

1/6

1/6

1/6

1/6

16. Теорема о существовании случайной величины с заданной функцией распределения. Непрерывная случайная величина. Вероятность отдельно взятого значения непрерывной случайной величины. Примеры.

Как известно, случайной величиной называется переменная величина, которая может принимать те или иные значения в зависимости от случая. Случайные величины обозначают заглавными буквами латинского алфавита (X, Y, Z), а их значения – соответствующими строчными буквами (x, y, z). различают непрерывные и дискретные случайные величины.

Непрерывной случайной величиной называется случайная величина Х, если ее функция распределения (интегральная функция распределения) представима в виде:

где f(x) – некоторая неотрицательная функция, такая что

Функция f(x) называется плотностью распределения вероятностей случайной величины X (дифференциальной функцией распределения).

Вероятность того, что непрерывная случайная величина X принимает значение в заданном промежутке, вычисляется следующим образом:

Примеры распределений вероятностей непрерывной случайной величины Х:

  • равномерное распределение вероятностей непрерывной случайной величины;

  • показательное распределение вероятностей непрерывной случайной величины;

  • нормальное распределение вероятностей непрерывной случайной величины.

17. Абсолютно непрерывная случайная величина. Плотность вероятности абсолютно непрерывной случайной величины, ее определение, свойства, и график.

Важный класс непрерывных случайных величин -- абсолютно непрерывные случайные величины. Это случайные величины, распределение которых имеет плотность.

Определение 3.7   Случайная величина называетсяабсолютно непрерывной, если существует функция такая, что

  1. ,

  2. ,

  3.  имеет место равенство: 

Функция , обладающая вышеперечисленными свойствами, называетсяплотностью распределения случайной величины .

Следствие 3.1   Если -- абсолютно непрерывная случайная величина, то

Наглядный смысл плотности можно проиллюстрировать следующим рисунком.

Замечание 3.5   Если плотность непрерывна в точке, то из Следствия3.1вытекает следующее представление: 

 

 

 

Следствие 3.2   Если -- точка непрерывности функции, то

Примеры абсолютно непрерывных распределений

1) Равномерное распределение в отрезке 

2) Показательное распределение с параметром 

Показательное распределение называют также экспоненциальным.

3) Нормальное (или гауссовское) распределение ,,:

Стандартное нормальное распределение -- :

Плотность распределения удовлетворяет свойствам:

 и .

И наоборот, любая интегрируемая функция , удовлетворяющая этим свойствам, может быть взята в качестве плотности распределения некоторой случайной величины.

Поскольку функция распределения является функцией верхнего предела от плотности, то последняя восстанавливается по ней дифференцированием:

.