
- •1. Классификация случайных событий: возможные и невозможные события, совместные и несовместные, противоположные и достоверные события. Примеры.
- •2. Полная группа событий. Пространство элементарных исходов. Примеры.
- •3. Классическое определение вероятности события. Свойства вероятности события. Примеры.
- •4. Статистическое определение вероятности события. Примеры. Теорема Бернулли (с доказательством).
- •5. Геометрическое определение вероятности. Примеры.
- •6. Сумма событий и ее свойства. Примеры.
- •7. Теорема сложения вероятностей (с доказательством) и ее следствия. Примеры. 8 Произведение событий и его свойства.
- •9. Условная вероятность. Зависимые и независимые события. Теорема умножения вероятностей (с доказательством). Примеры
- •11. Случайная величина (определение). Дискретная случайная величина и ее закон (ряд) распределения. Основное свойство закона распределения. Примеры.
- •Определение независимости случайных величин.
- •13.* Математические операции над дискретными случайными величинами. Примеры.
- •14. Функция распределения случайной величины, ее определение, свойства и график. Примеры.
- •15. Функция распределения дискретной случайной величины. Примеры.
- •16. Теорема о существовании случайной величины с заданной функцией распределения. Непрерывная случайная величина. Вероятность отдельно взятого значения непрерывной случайной величины. Примеры.
- •18. Математическое ожидание случайной величины и его свойства. Примеры
- •Свойства математического ожидания
- •Доказательство:
- •19. Дисперсия случайной величины и ее свойства. Среднее квадратическое отклонение случайной величины. Примеры.
- •1. Дискретная случайная величина, закон и функция распределения
- •2. Числовые характеристики дискретных случайных величин
- •20. Закон распределения Бернулли, его определение, свойства и примеры.
- •21. Биномиальный закон распределения, его определение, свойства и примеры.
- •22.Закон распределения Пуассона, его определение, свойства и примеры.
- •25. Нормальный (гауссовский) закон распределения.
- •26. Стандартный нормальный закон распределения. Функция Гаусса, ее свойства и график. Теорема о связи плотности нормального закона распределения и функции Гаусса.
- •27. Функция Лапласа, ее свойства, график и геометрический смысл. Теорема о связи функции распределения нормального закона и функции Лапласа. Примеры.
- •28.* Свойства случайной величины, распределенной по нормальному закону. Правило трех сигм. Примеры.
- •29.* Показательный (экспоненциальный) закон распределения, его определение, свойства и примеры.
- •34. Лемма Чебышева. Примеры
- •35. Неравенство Чебышева. Примеры
- •36. Понятие двумерной (n-мерной) случайной величины. Примеры. Одномерные распределения ее составляющих. Условные распределения.
- •37. Ковариация и коэффициент корреляции случайных величин. Связь между некоррелированностью и независимостью случайных величин
2. Полная группа событий. Пространство элементарных исходов. Примеры.
Полная группа событий. Полной группой событий называется совокупность всех возможных результатов опыта. Теорема. Сумма вероятностей событий А1 , А2 , ..., Аn , образующих полную группу, равна единице:
Р (A1) + Р (А2) + ... + Р (Аn) = 1.
Пространство элементарных исходов
Теория вероятностей изучает случайные явления не непосредственно, а с помощью идеализированных математических моделей случайных опытов.
Всякий случайный опыт (испытание, эксперимент) состоит в осуществлении некоторого комплекса условий и наблюдении результата. Любой наблюдаемый результат опыта интерпретируется как случайный исход (случайное событие). Случайное событие в результате опыта может произойти, а может и не произойти.
Каждому
опыту ставится в соответствие пространство
элементарных исходов . Это
множество простейших (т.е. неразложимых
в рамках данного опыта на более простые)
взаимоисключающих исходов
,
таких, что результатом эксперимента
всегда является один и только один
исход
.
Пример 1.1.1.
Опыт состоит в бросании одной правильной шестигранной игральной кости и наблюдении числа выпавших очков.
Элементарные
исходы: {выпало
очков},
.
Неэлементарные
исходы (события): ={выпало
чётное число очков},
={выпало
число очков, большее, чем 2} и т.п. Исход
не
является элементарным, т.к. он разлагается
на более простые исходы
.
Пространство
элементарных исходов данного
случайного опыта состоит
из шести элементов.
3. Классическое определение вероятности события. Свойства вероятности события. Примеры.
Вероятностью события называется отношение числа элементарных исходов, благоприятствующих данному событию, к числу всех равновозможных исходов опыта, в котором может появиться это событие. Вероятность события А обозначают через Р (А). В соответствии с определением P(A)=m/n , где m - число элементарных исходов, благоприятствующих событию А; n - число всех равновозможных элементарных исходов опыта, образующих полную группу событий. Это определение вероятности называют классическим.
Основные свойства вероятности. Пусть задано пространство элементарных событий Е , а вероятности Р определены на событиях из Е . Тогда:
Пример 1.
В урне 10 одинаковых по размерам и весу шаров, из которых 4 красных и 6 голубых. из урны извлекается один шар. Какова вероятность того, что извлеченный шар окажется голубым?
Решение. Событие "извлеченный шар оказался голубым" обозначим буквой А. Данное испытание имеет 10 равновозможных элементарных исходов, из которых 6 благоприятствуют событию А. В соответствии с формулой P(A)=m/n , получаем P(A)=6/10=0,6
4. Статистическое определение вероятности события. Примеры. Теорема Бернулли (с доказательством).
Статистической вероятностью события А называется относительная частота (частость) появления этого события в n произведенных испытаниях, т.е.
w(A) – относительная частота (частость) события А;
m – число испытаний, в которых появилось событие А;
n – общее число испытаний.
Статистическое определение вероятности, как и понятия и методы теории вероятности, применимы только к тем событиям, которые обладают свойствами:
Рассматриваемые события должны быть исходами только тех испытаний, которые могут быть воспроизведены неограниченное число раз при одном и том же комплексе условий.
События должны обладать статистической устойчивостью, или устойчивостью относительных частот. Это означает, что в серии испытаний относительная частота события меняется незначительно.
Число испытаний, в результате которых появляется событие А, должно быть достаточно велико, ибо только в этом случае можно считать вероятность события Р(А) приближенно равной ее относительной частоте.
Пример. Английский учёный Пирсон произвел 23000 бросаний монеты, герб появился 11512 раз.
W(A)
=
= 0.5005
Теорема Бернулли.
Частость события в n повторных независимых испытаниях в каждом из которых оно может произойти с одной и той же вероятностью p, при неограниченном увеличении числа n сходится по вероятности к вероятности р этого события в отдельном испытании:
Cмысл теоремы состоит в том, что при большом числе n повторных независимых испытаний практически достоверно, что частость события m/n – величина случайная, как угодно мало отличается от неслучайной величины p – вероятности события, т.е. практически перестает быть случайной.
Доказательство:
|
0 |
1 |
|
q |
p |

г
E(=p
; D(
=pq
Таким образом, выполняются все условия теоремы Чебышева, т.е.
.