
- •1. Классификация случайных событий: возможные и невозможные события, совместные и несовместные, противоположные и достоверные события. Примеры.
- •2. Полная группа событий. Пространство элементарных исходов. Примеры.
- •3. Классическое определение вероятности события. Свойства вероятности события. Примеры.
- •4. Статистическое определение вероятности события. Примеры. Теорема Бернулли (с доказательством).
- •5. Геометрическое определение вероятности. Примеры.
- •6. Сумма событий и ее свойства. Примеры.
- •7. Теорема сложения вероятностей (с доказательством) и ее следствия. Примеры. 8 Произведение событий и его свойства.
- •9. Условная вероятность. Зависимые и независимые события. Теорема умножения вероятностей (с доказательством). Примеры
- •11. Случайная величина (определение). Дискретная случайная величина и ее закон (ряд) распределения. Основное свойство закона распределения. Примеры.
- •Определение независимости случайных величин.
- •13.* Математические операции над дискретными случайными величинами. Примеры.
- •14. Функция распределения случайной величины, ее определение, свойства и график. Примеры.
- •15. Функция распределения дискретной случайной величины. Примеры.
- •16. Теорема о существовании случайной величины с заданной функцией распределения. Непрерывная случайная величина. Вероятность отдельно взятого значения непрерывной случайной величины. Примеры.
- •18. Математическое ожидание случайной величины и его свойства. Примеры
- •Свойства математического ожидания
- •Доказательство:
- •19. Дисперсия случайной величины и ее свойства. Среднее квадратическое отклонение случайной величины. Примеры.
- •1. Дискретная случайная величина, закон и функция распределения
- •2. Числовые характеристики дискретных случайных величин
- •20. Закон распределения Бернулли, его определение, свойства и примеры.
- •21. Биномиальный закон распределения, его определение, свойства и примеры.
- •22.Закон распределения Пуассона, его определение, свойства и примеры.
- •25. Нормальный (гауссовский) закон распределения.
- •26. Стандартный нормальный закон распределения. Функция Гаусса, ее свойства и график. Теорема о связи плотности нормального закона распределения и функции Гаусса.
- •27. Функция Лапласа, ее свойства, график и геометрический смысл. Теорема о связи функции распределения нормального закона и функции Лапласа. Примеры.
- •28.* Свойства случайной величины, распределенной по нормальному закону. Правило трех сигм. Примеры.
- •29.* Показательный (экспоненциальный) закон распределения, его определение, свойства и примеры.
- •34. Лемма Чебышева. Примеры
- •35. Неравенство Чебышева. Примеры
- •36. Понятие двумерной (n-мерной) случайной величины. Примеры. Одномерные распределения ее составляющих. Условные распределения.
- •37. Ковариация и коэффициент корреляции случайных величин. Связь между некоррелированностью и независимостью случайных величин
35. Неравенство Чебышева. Примеры
Лемма: Если случайная величина Х имеет конечные математическое ожидание М(Х) и дисперсию Д(Х), то для любого положительного справедливо неравенство
Данное неравенство часто дает грубую, не представляющую интереса оценку. Например, пусть
,
тогда
Тем не менее данное неравенство имеет большое теоретическое значение. С его помощью доказываются теоремы и делаются теоретические выводы.
36. Понятие двумерной (n-мерной) случайной величины. Примеры. Одномерные распределения ее составляющих. Условные распределения.
37. Ковариация и коэффициент корреляции случайных величин. Связь между некоррелированностью и независимостью случайных величин
Двумерный нормальный закон распределения.. Систему случайных величин можно интерпретировать как случайную точку на плоскости. Нормальный закон распределения для системы (Х,У) называется двумерным нормальным законом распределения и имеет плотность вероятности
где
-
математические ожидания соответственно
случайных величин Х и У,
-
средние квадратические отклонения этих
величин,r
– коэффициент корреляции Х и У. поверхность
f(x,y)
имеет вид
Двумерный
нормальный закон распределения имеет,
например, точка попадания снаряда из
орудия, которое хорошо пристреляно по
цели имеющей координаты
.
Если случайные величины независимы, то r=0 и функция плотности вероятности f(x,y) имеет вид
а,
что соответствует упомянутому нами свойству систем независимых случайных величин.
Условные математические ожидания и условные дисперсии нормально распределённых величин вычисляются по формулам:
Му(х)
= ах +
(у
- ау), Мх(у) = ау +
(х
- ах),
Dу(Х)
=2х(1
-
2),
Dх(У) =
2у(1
-
2).
39.