
- •А. В. Ширшова физика твердого тела
- •Глава 1. Азбука кристаллографии…………………………..…...….….43
- •I. Рабочая программа Пояснительная записка.
- •Содержание дисциплины
- •Контрольные вопросы к экзамену.
- •Методические указания к практическим
- •1.2. Система координат.
- •1. 3. Индексы узлов, узловых прямых и узловых плоскостей.
- •1. 4. Элементарная ячейка кристалла.
- •1. 5. Элементы симметрии.
- •1. 6. Cингонии.
- •2. Практическая часть работы.
- •Варианты заданий
- •Приложение
- •Характеристика сингоний кристаллов.
- •Характеристика различных типов решеток.
- •Связь между индексами (hkl), величиной d и периодами решетки a, b, с для каждой сингонии.
- •Число идентичных плоскостей p для совокупностей с разными индексами в кубической сингонии.
- •III. Тесты для самоконтроля студентов
- •IV. Конспект лекций
- •Глава 1. Азбука кристаллографии
- •Пространственная решетка
- •1.2. Система координат.
- •1. 3. Индексы узлов, узловых прямых и узловых плоскостей.
- •1.4. Элементарная ячейка кристалла.
- •1. 5. Элементы симметрии.
- •1. 6. Cингонии.
- •1.7. Обратная решетка
- •Приложение к главе 1
- •Характеристика сингоний кристаллов.
- •Связь между индексами (hkl), величиной d и периодами решетки a, b, с для каждой сингонии.
- •Число идентичных плоскостей p для совокупностей с разными индексами в кубической сингонии.
- •Глава2. Методы структурного анализа
- •2.1. Общие положения.
- •2.2. Дифракция Вульфа – Брэгга.
- •2.3. Метод Лауэ.
- •2.4. Метод вращения кристалла.
- •2.5 . Порошковый метод Дебая – Шеррера.
- •Глава 3. Межатомное взаимодействие. Основные типы связей в твердых телах
- •3.1. Классификация твердых тел. Типы связей
- •3.2. Энергия связи
- •3.3. Молекулярные кристаллы
- •3.4. Ионные кристаллы
- •3.5. Ковалентные кристаллы
- •3.6. Металлы
- •Глава 4. Элементы квантовой статистики
- •4.1. Квантовая статистика. Фазовое пространство. Функция распределения
- •4.2. Понятие о квантовой статистике Бозе — Эйнштейна и Ферми- — Дирака
- •4.3. Вырожденный электронный газ в металлах
- •4.4. Понятие о квантовой теории теплоемкости. Фононы
- •4.5. Выводы квантовой теории электропроводности металлов
- •4.6. Сверхпроводимость. Понятие об эффекте Джозефсона
- •Глава 5. Электрические свойства твердых тел.
- •5.1. Понятие о зонной теории твердых тел
- •5.2. Металлы, диэлектрики и полупроводники по зонной теории
- •5.3. Собственная проводимость полупроводников
- •5.4. Примесная проводимость полупроводников
- •5. 5. Фотопроводимость
- •5 6. Люминесценция твердых тел
- •5.7. Контакт двух металлов по зонной теории
- •5 8. Термоэлектрические явления и их применение
- •Физика твердого тела
- •625003, Г. Тюмень, ул. Семакова, 10.
1. 3. Индексы узлов, узловых прямых и узловых плоскостей.
Если
положение данного узла задано вектором
,
то числа m,
n
и p
по существу являются координатами узла
решетки и называются индексами
узла.
В пространственной решетке можно провести бесконечное число узловых прямых. Узловые прямые, параллельные между собой, образуют семейство узловых прямых. Для характеристики направления прямых данного семейства достаточно определить направление одной из его прямых – той, которая проходит через начало координат. Положение её по отношению к основным кристаллографическим осям однозначно характеризуется координатами ближайшего к началу координат узла. Таким образом, координаты этого узла являются индексами узловой прямой. Индексы узловых прямых при написании отличают от индексов узлов тем, что первые условились заключать в квадратные скобки (например, [u, v, w], а вторые - в двойные квадратные скобки - [ [ u, v, w ] ]).
Пространственная
решетка кристалла характеризуется
также различными совокупностями
параллельных и равноотстоящих друг от
друга узловых плоскостей, которые
называются семействами
узловых (атомных) плоскостей.
Рис. 2. Семейства плоскостей. Межплоскостные расстояния.
Кратчайшее расстояние между соседними плоскостями данного семейства называется межплоскостным расстоянием и обозначается буквой d. На рис. 2 приведены проекции нескольких семейств плоскостей и указаны соответствующие межплоскостные расстояния. Пространственное расположение плоскостей данного семейства однозначно определяется расположением одной из параллельных плоскостей. Для определенности берут плоскость семейства, ближайшую к началу координат, но не проходящую через начало координат.
В общем случае такая плоскость отсекает на координатных осях отрезки, величина которых может быть выражена в долях элементарных трансляций. Пусть, например, плоскость отсекает на осях отрезки a/h, b/k, c/l (рис.3).
Рис. 3. К определению индексов плоскости.
Числа
h,
k,
l,
характеризующие наклон плоскости по
отношению к основным кристаллографическим
осям, являются координатами или индексами
данной
плоскости
и
в то же время –индексами всего семейства
параллельных плоскостей. Индексы
плоскостей принято заключать в круглые
скобки – (h
k
l),
причем запятые между h,k,l
не ставятся.
По имени ученого, впервые предложившего такое определение индексов, они называются индексами Миллера. Если h, k, l являются дробными, то индексами семейства служат целые числа – числители, приведенных к общему знаменателю, дробей. Так, например, если плоскости отсекают по оси x отрезок a/2, по оси y – 2b/3, а по оси z –1, т.е. h=2, k=3/2, l=1, то индексы Миллера в данном случае есть (432).
Если
плоскость отсекает на какой- либо оси
отрезок в отрицательном направлении,
то над соответствующим индексом ставится
знак минус (например, ()).
Если плоскости семейства параллельны какому-либо из основных кристаллографических направлений, т.е. пересекают его в бесконечности, то соответствующий индекс Миллера равен 0 (например, плоскости семейства (hk0) параллельны оси z). Если плоскости семейства параллельны какой-либо из координатных плоскостей, т.е. параллельны двум основным осям, то два соответствующих индекса равны 0 (так плоскости (00l) параллельны координатной плоскости xy, а (0k0) – плоскости xz).
Легко убедится, что семейства плоскостей с небольшими межплоскостными расстояниями dhkl имеют сравнительно большие индексы Миллера, а семейства с большими dhkl - относительно малые индексы.
Число
узлов, приходящихся на единицу площади
плоскости данного семейства, называется
ретикулярной
плотностью.
Если рассматривать только такие семейства
плоскостей, каждое из которых содержат
все узлы решетки, то системы с наибольшими
dhkl
будут содержать плоскости с наибольшей
ретикулярной плотностью (т.к. число
атомов в данном кристалле постоянно).
Геометрический смысл индексов плоскости (hkl) ясен из уравнения плоскости в отрезках, представленного в декартовых координатах X,Y,Z:
(1.2)
Уравнение (1.2) есть уравнение первой от начало координат плоскости семейства hkl.