
- •Введение
- •Общие сведения об искусственных сооружениях
- •3.1. Мост и его конструктивные элементы
- •3.2. Разновидности мостов
- •3.3. Разновидности искусственных сооружений
- •3.4. Основные положения проектирования мостов и труб
- •3.4.1. Общие требования
- •3.4.2. Габариты мостов
- •3.4.3. Вариантное проектирование
- •3.4.4. Основные положения расчета мостов и труб
- •3.4.5. Принципы унификации и типизации пролетных строений
- •Контрольные вопросы
- •Железобетонные мосты
- •4.1. Область применения, основные системы и материалы
- •4.2. Конструкции пролетных строений балочных мостов
- •4.2.1. Плитные пролетные строения
- •4.2.2. Ребристые пролетные строения с ненапрягаемой арматурой
- •4.2.3. Свайные и стоечно-эстакадные мосты
- •4.2.4. Ребристые пролетные строения с напрягаемой арматурой
- •4.2.5. Конструктивные детали железобетонных пролетных строений
- •4.3. Балочно-неразрезные мосты
- •4.4. Общие сведения о рамных и арочных мостах
- •4.4.1. Рамные мосты
- •4.4.2. Арочные и комбинированные мосты
- •4.5.Основные положения проектирования железобетонныхбалочно-разрезных пролетных строений
- •Контрольные вопросы
- •Опоры балочных мостов
- •5.1. Общие сведения
- •5.2. Промежуточные опоры
- •5.3. Береговые опоры
- •5.4. Основные положения расчета опор
- •Контрольные вопросы
- •Стальные мосты
- •6.1. Общие сведения
- •6.2. Пролетные строения со сплошными балками
- •6.3. Сталежелезобетонные пролетные строения
- •6.4. Коробчатые пролетные строения
- •6.5. Балочно-разрезные пролетные строения с фермами
- •6.6. Балочно-неразрезные пролетные строения с фермами
- •6.7. Арочные пролетные строения
- •6.8. Рамные пролетные строения
- •6.9. Основные положения расчета пролетных строений со сплошными балками
- •Контрольные вопросы
- •Водопропускные трубы
- •7.1. Общие сведения
- •7.2. Конструкции сборных железобетонных и бетонных труб
- •7.3. Конструкции металлических труб
- •7.4. Водопропускные трубы в условиях наледеобразования
- •7.5. Основные положения расчета труб
- •Контрольные вопросы
- •Заключение
- •Библиографический список
Железобетонные мосты
План лекции
4.1. Область применения, основные системы, материалы
4.2. Конструкции пролетных строений балочных мостов
4.3. Балочно-неразрезные мосты
4.4. Общие сведения о рамных и арочных мостах
4.5. Основные положения проектирования железобетонных балочно-разрезных пролетных строений
4.1. Область применения, основные системы и материалы
На железных дорогах России применяют в основном малые и средние железобетонные мосты.
По своим конструктивным особенностям пролетные строения железобетонных мостов подразделяют на два вида: с ненапрягаемой арматурой и с предварительно напряженной арматурой главных балок.
Они бывают однопутными и двухпутными, но предпочтение отдают пролетным строениям с одной веткой железнодорожного пути.
К основным системамжелезобетонных мостов относят балочные (разрезные, неразрезные и консольные), рамные, арочные.
Балочныеразрезныежелезобетонные пролетные строения получили наиболее широкое применение (рис. 4.1,а).
Рис. 4.1. Основные системы железобетонных мостов: а – балочные разрезные; б – балочные неразрезные; в – балочные консольные; г – рамные; д – арочные
Они используются преимущественно для малых и средних мостов. Балочные неразрезныеконструкции применяют для перекрытия больших пролетов (рис. 4.1,б). По расходу материала они более экономичны по сравнению с простыми разрезными системами, но имеют ограничения в применении из-за чувствительности к неравномерным осадкам опор, усадке и ползучести бетона, а также температурным деформациям.Рамные системы железобетонных мостов характеризуются жестким соединением ригеля и стойки, работающих совместно (рис. 4.1,г). Их преимущество перед простыми балочно-разрезными системами заключается в повышенной жесткости конструкции и меньшем расходе материала, но в то же время они обладают такими же недостатками, что и неразрезные пролетные строения.Арочныепролетные строения применяют для перекрытия больших и гигантских пролетов. Их преимущество перед разрезными пролетами заключается в том, что арки, работающие в основном на сжатие, в наибольшей степени обеспечивают прочностные свойства железобетона (рис. 4.1,д). Находят применение арочные распорные и безраспорные мосты, а также бесшарнирные и шарнирные системы. Арочные мосты долговечны, но весьма трудоемки и являются дорогостоящими объектами.
Применяются комбинированные железобетонные мосты, в которых совмещена работа двух и более систем. К ним относят мосты с арочными пролетами с ездой посередине, а также вантовыми и висячими пролетными строениями (рис. 4.2).
Такие мосты отличаются своими архитектурными достоинствами и более экономичными показателями и, как правило, используются для перекрытия больших, гигантских и супергигантских пролетов. Вантовые и висячие пролеты находят применение преимущественно в системе автодорожных и городских мостов.
Железобетон – это комплексный строительный материал, состоящий из бетона и стальной арматуры (1–4 %), работающих совместно под нагрузкой. При распределении функций между бетоном и арматурой предусматривают условие, при котором бетон обеспечивает работу конструкций в основном в сжатой, а стальная арматура – в растянутой зонах.
К достоинствам железобетонных мостов относят высокую прочность, долговечность, огнестойкость, способность к сопротивлению при воздействии природно-климатических факторов, низкие эксплуатационные затраты.
Бетон. Для элементов железобетонных мостов применяют конструкционный тяжелый бетон со средней плотностью 2200–2500 кг/м3.
К основной характеристике, определяющей прочностные свойства, относят класс бетона по прочности на сжатие. Класс бетона по прочности на сжатие выражают нормативным сопротивлением осевому сжатию кубов размером 151515 см с обеспеченностью 0,95, измеряемым в мегапаскалях. Зависимость между классом бетонаВ по прочности на сжатие и определяемой на кубах прочностью бетона выражают [13] зависимостью
,
(4.1)
где
– коэффициент вариации прочности
бетона, который согласно нормативным
документам для тяжелого бетона принимают
= 0,135;
– среднеквадратическое отклонение
значений прочности бетона в серии
испытываемых образцов;
– среднее значение прочности бетона в
серии образцов.
Для конструкций железобетонных мостов применяют бетон классов В20; В22,5; В25; В27,5; В30; В40; В45; В50; В55; В60.
Бетон является упругопластичным
материалом, в котором под действием
нагрузки одновременно развиваются
упругие и пластические деформации.
Отношение напряжения в бетоне к упругим
относительным деформациям определяет
упругие свойства материала, характеризуемые
модулем упругости бетона.
Модуль упругости бетона имеет одинаковое
значение при сжатии и растяжении и
зависит от класса бетона по прочности
и условий твердения, его определяют по
СНиП 2.05.03-84*[12] в зависимости от
класса бетона.
К бетону мостовых конструкций предъявляют
требования по морозостойкости в
зависимости от климатических условий
строительства и эксплуатации. Марку
бетона по морозостойкостиопределяют по СНиП 2.05.03-84*[12].
Марку бетона по водонепроницаемости, характеризующую плотность и подвижность бетонной смеси, определяют по СНиП 2.05.03-84*[12].
При строительстве, ремонте или реконструкции мостов к числу значимых характеристик относят скорость набора прочностибетона. Согласно [11] обычный бетон достигает 50 % прочности через 3 суток при температуре плюс 20оС, а при подогреве и пропаривании бетонной смеси он может набрать до 80 % прочности через 2 суток.
Арматура является составной частью железобетона. Требования, предъявляемые к арматуре, заключаются в том, что она должна надежно обеспечивать совместную работу с бетоном на всех стадиях эксплуатации мостовых конструкций, использоваться до физического или условного предела текучести при исчерпании их несущей способности, а также соответствовать условиям механизации при производстве монтажных работ.
Арматуру элементов железобетонных мостов подразделяют на рабочую и конструктивную. Под рабочей понимают арматуру, площадь сечения которой определяют расчетом на действие внешних нагрузок. Кконструктивной относят монтажную и распределительную арматуру, устанавливаемую без расчета по конструктивным или технологическим соображениям.Монтажная арматура обеспечивает жесткость арматурного каркаса.Распределительная арматура предназначена для более равномерного распределения сосредоточенных усилий в стержнях рабочей арматуры. Конструктивную арматуру устанавливают также для частичного восприятия неучитываемых расчетом усилий от усадки и ползучести бетона, температурных напряжений, местных напряжений от действия сосредоточенных сил, случайных напряжений, возникающих при изготовлении, транспортировке и монтаже конструкций.
Арматуру подразделяют на горячекатаную стержневую, холоднотянутую проволочную и термически упрочненную гладкую и периодического профиля, ненапрягаемую и напрягаемую.
Арматурную сталь характеризуют классом и маркой. Класс арматуры определяет прочностные свойства стали. Марка низколегированной стали указывает на ее химический состав, а углеродистой – на сведения о степени раскисления, группе и категории гарантии.
Ненапрягаемую стержневую арматуру применяют классов А-I,A-II,Aс-II,A-IIIдиаметром от 6 до 40 мм. Напрягаемую арматуру используют из проволоки диаметром 3–5 мм классаB-IIв виде пучков, а также стержневой высокопрочной арматуры периодического профиля классовA-IV,A-V,A-VI.
Основной прочностной характеристикой арматурной стали является физический или условный предел текучести. Физический предел текучести характерен для сталей классов, применяемых для ненапрягаемой арматуры, а условный – стержневой повышенной прочности и высокопрочной напрягаемой арматуры. Высокопрочную арматурную сталь характеризуют условным пределом текучести, за который принимают напряжение с остаточной относительной деформацией величиной 0,2 %. Основным показателем прочности твердых сталей является временное сопротивление разрыву.
Для напрягаемой высокопрочной арматуры характерна релаксация напряжений. Она зависит от прочности и химического состава стали, технологии изготовления, температуры, величины натяжения арматуры и других факторов. Релаксация напряжений протекает неравномерно: наиболее интенсивно в первые часы, а затем процесс постепенно затухает.