Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Econometrics2011

.pdf
Скачиваний:
10
Добавлен:
21.03.2016
Размер:
1.77 Mб
Скачать

APPENDIX B. PROBABILITY

 

263

If (B.4) does not hold, evaluate

 

Zg(x)>0 g(x)f(x)dx

I1

=

I2

=

Zg(x)<0 g(x)f(x)dx

If I1 = 1 and I2 < 1 then we de…ne Eg(X) = 1: If I1 < 1 and I2 = 1 then we de…ne Eg(X) = 1: If both I1 = 1 and I2 = 1 then Eg(X) is unde…ned.

Since E(a + bX) = a + bEX; we say that expectation is a linear operator.

For m > 0; we de…ne the m0th moment of X as EXm and the m0th central moment as

E(X EX)m :

Two special moments are the mean = EX and variance 2 = E(X )2 = EX2 2: We p

call = 2 the standard deviation of X: We can also write 2 = var(X). For example, this allows the convenient expression var(a + bX) = b2 var(X):

The moment generating function (MGF) of X is

M( ) = Eexp ( X) :

The MGF does not necessarily exist. However, when it does and EjXjm < 1 then

 

dm

 

 

d m M( ) =0 = E(Xm)

 

 

 

 

which is why it is called the moment generating

function.

More generally, the characteristic function (CF) of X is

C( ) = Eexp (i X)

where i = p 1 is the imaginary unit. The CF always exists, and when EjXjm < 1

 

 

 

dm

 

 

 

 

 

d m

C( ) =0 = imE(Xm) :

The Lp norm, p

 

 

 

X is

 

1; of the random variable

kXkp = (EjXjp)1=p :

B.4 Gamma Function

The gamma function is de…ned for > 0 as

Z 1

( ) = x 1 exp ( x) :

0

It satis…es the property

(1 + ) = ( )

so for positive integers n;

(n) = (n 1)!

Special values include

(1) = 1

and

 

 

 

 

1

 

= 1=2:

2

 

 

 

 

Sterling’s formula is an expansion for the its logarithm

log ( ) =

1

log(2 ) +

 

1

log z +

1

 

1

+

1

+

 

 

 

 

 

2

2

12

360 3

1260 5

APPENDIX B. PROBABILITY

264

B.5 Common Distributions

For reference, we now list some important discrete distribution function.

Bernoulli

Pr (X = x) = px(1 p)1 x;

EX = p

var(X) = p(1 p)

Binomial

 

 

n

Pr (X = x)

=

x px (1 p)n x ;

EX

=

np

var(X)

= np(1 p)

Geometric

x = 0; 1; 0 p 1

x = 0; 1; :::; n; 0 p 1

Pr (X = x)

= p(1 p)x 1;

EX

=

1

 

p

 

 

var(X)

=

1 p

 

 

 

p2

Multinomial

Pr (X1 = x1; X2 = x2; :::; Xm = xm)

x1 + + xm p1 + + pm

EXi var(Xi) cov (Xi; Xj)

Negative Binomial

x = 1; 2; :::; 0 p 1

 

n!

=

x1!x2! xm!p1x1 p2x2 pmxm ;

=n;

=1

=pi

=npi(1 pi)

=npipj

Pr (X = x)

=

(r + x)

pr(1 p)x 1;

x = 0; 1; 2; :::;

0 p 1

 

 

x! (r)

 

EX

=

 

r (1 p)

 

 

 

 

 

 

 

 

 

p

 

 

 

 

 

 

var(X)

=

 

r (1 p)

 

 

 

 

 

 

 

 

 

p2

 

 

 

 

 

 

Poisson

 

 

 

 

 

 

 

 

 

 

Pr (X = x)

=

exp ( ) x

;

x = 0; 1; 2; :::;

> 0

 

EX

 

 

 

x!

 

 

 

 

=

 

 

 

 

 

var(X)

=

 

 

 

 

 

We now list some important continuous distributions.

APPENDIX B. PROBABILITY

265

Beta

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f(x) =

 

( + )

x 1(1 x) 1;

 

 

0 x 1;

> 0; > 0

 

 

 

 

 

 

 

 

 

 

( ) ( )

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

var(X)

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( + + 1) ( + )2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cauchy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f(x)

=

 

 

 

 

 

1

 

 

 

;

 

 

1 < x < 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1 + x2)

 

 

 

 

 

 

EX

=

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

var(X) = 1

 

 

 

 

 

 

 

 

 

 

 

 

Exponential

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

f(x)

=

 

 

 

 

exp

 

;

 

 

0 x < 1;

> 0

 

 

 

 

 

 

 

 

 

 

EX

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

var(X) = 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Logistic

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f(x) =

 

 

 

 

 

 

 

 

exp ( x)

 

 

2

; 1 < x < 1;

 

 

 

 

 

(1 + exp ( x))

 

 

 

 

 

EX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

var(X)

=

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lognormal

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

)2

 

 

 

f(x)

=

 

 

p

 

 

 

exp

 

(log

 

 

 

 

!;

0 x < 1; > 0

 

 

2 x

 

2 2

 

 

 

 

X

=

 

exp + 2=2

exp 2 + 2

 

 

 

var(EX)

=

 

exp 2 + 2 2

 

 

 

 

Pareto

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x < 1;

 

 

 

 

f(x)

=

 

 

 

;

 

 

 

 

> 0;

> 0

 

 

 

x +1

 

 

 

 

 

EX

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

;

 

 

 

> 1

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

var(X)

=

 

 

 

 

 

 

 

 

 

2

 

 

 

;

 

 

 

 

> 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( 1)2 ( 2)

 

 

 

 

 

 

 

 

Uniform

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f(x)

=

1

 

;

 

 

a x b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EX

=

 

a + b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

var(X)

=

 

(b a)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

APPENDIX B. PROBABILITY

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

266

Weibull

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f(x)

=

 

 

 

 

x 1 exp

x

; 0 x < 1;

> 0; > 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EX = 1=

1 +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 +

 

 

 

 

 

 

 

var(X)

=

 

 

2=

 

 

 

1 + 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

Gamma

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

f(x)

 

=

 

 

 

 

 

 

 

 

x 1 exp

 

;

 

 

0 x < 1;

> 0; > 0

 

 

 

 

 

( )

 

 

 

 

 

EX

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

var(X) = 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chi-Square

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f(x) =

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

xr=2 1 exp

x

; 0 x < 1;

r > 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(r=2)2r=2

2

 

 

 

 

EX

 

=

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

var(X)

= 2r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Normal

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f(x)

=

 

 

 

1

 

 

exp

 

 

 

 

 

(x )2

;

 

 

 

 

 

 

 

< x <

 

;

 

< <

 

; 2

> 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p2

 

 

 

 

 

 

 

 

 

 

 

2 2

!

 

 

 

 

1

 

 

 

1

 

1

 

1

 

 

EX

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

var(X) = 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Student t

 

 

 

 

 

 

 

 

 

 

 

 

r

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r+1

 

 

 

x2

(r+12

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f(x) =

 

 

p

 

 

 

2

 

 

 

 

 

 

1 +

 

 

 

 

 

 

 

 

 

; 1 < x < 1;

r > 0

 

 

 

 

 

 

r

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EX

 

=

 

 

0 if

r

> 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

var(X)

 

=

 

 

 

 

 

 

r

 

 

 

if

r > 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.6 Multivariate Random Variables

A pair of bivariate random variables (X; Y ) is a function from the sample space into R2: The joint CDF of (X; Y ) is

F (x; y) = Pr (X x; Y y) :

If F is continuous, the joint probability density function is

f(x; y) =

@2

F (x; y):

 

 

@x@y

For a Borel measurable set A 2 R2;

Z Z

Pr ((X < Y ) 2 A) =

f(x; y)dxdy

A

APPENDIX B. PROBABILITY

 

267

For any measurable function g(x; y);

 

 

 

1

1

Eg(X; Y ) = Z 1 Z 1 g(x; y)f(x; y)dxdy:

The marginal distribution of X is

 

 

FX (x) =

Pr(X x)

=

lim F (x; y)

 

y!1

 

x

1

=

Z 1 Z 1 f(x; y)dydx

so the marginal density of X is

 

 

d

 

1

Z

fX (x) = dxFX (x) = 1 f(x; y)dy:

Similarly, the marginal density of Y is

Z 1

fY (y) = f(x; y)dx:

1

The random variables X and Y are de…ned to be independent if f(x; y) = fX (x)fY (y): Furthermore, X and Y are independent if and only if there exist functions g(x) and h(y) such that f(x; y) = g(x)h(y):

If X and Y are independent, then

Z Z

 

 

E(g(X)h(Y )) =

g(x)h(y)f(y; x)dydx

 

=

Z Z

g(x)h(y)fY (y)fX (x)dydx

 

 

Z

Z

 

=

g(x)fX (x)dx h(y)fY (y)dy

 

=

Eg (X) Eh (Y ) :

(B.5)

if the expectations exist. For example, if X and Y are independent then

E(XY ) = EXEY:

Another implication of (B.5) is that if X and Y are independent and Z = X + Y; then

MZ( ) = Eexp ( (X + Y ))

=E(exp ( X) exp ( Y ))

=Eexp 0X Eexp 0Y

= MX ( )MY ( ):

(B.6)

The covariance between X and Y is

cov(X; Y ) = XY = E((X EX) (Y EY )) = EXY EXEY:

The correlation between X and Y is

XY

corr (X; Y ) = XY = x Y :

APPENDIX B. PROBABILITY

268

The Cauchy-Schwarz Inequality implies that

 

j XY j 1:

(B.7)

The correlation is a measure of linear dependence, free of units of measurement.

If X and Y are independent, then XY = 0 and XY = 0: The reverse, however, is not true. For example, if EX = 0 and EX3 = 0, then cov(X; X2) = 0:

A useful fact is that

var (X + Y ) = var(X) + var(Y ) + 2 cov(X; Y ):

An implication is that if X and Y are independent, then

var (X + Y ) = var(X) + var(Y );

the variance of the sum is the sum of the variances.

A k 1 random vector X = (X1; :::; Xk)0 is a function from S to Rk: Let x = (x1; :::; xk)0 denote a vector in Rk: (In this Appendix, we use bold to denote vectors. Bold capitals X are random vectors and bold lower case x are nonrandom vectors. Again, this is in distinction to the notation used in the bulk of the text) The vector X has the distribution and density functions

F (x)

=

Pr(X x)

 

 

 

@k

f(x)

=

 

 

F (x):

 

@x1 @xk

For a measurable function g : Rk ! Rs; we de…ne the expectation

Z

Eg(X) = g(x)f(x)dx

Rk

where the symbol dx denotes dx1 dxk: In particular, we have the k 1 multivariate mean

= EX

and k k covariance matrix

0

= E (X ) (X )

= EXX0 0

If the elements of X are mutually independent, then is a diagonal matrix and

Xk ! Xk

var

Xi = var (Xi)

i=1

i=1

B.7 Conditional Distributions and Expectation

The conditional density of Y given X = x is de…ned as

f(x; y) fY jX (y j x) = fX(x)

APPENDIX B. PROBABILITY

269

if fX(x) > 0: One way to derive this expression from the de…nition of conditional probability is

fY jX (y j x)

=

@

lim Pr (Y

 

y

j

x

 

X

 

x + ")

 

 

@y "

!

0

 

 

 

 

 

 

 

 

 

@

 

 

Pr (fY yg \ fx X x + "g)

 

=

lim

 

 

 

 

 

 

 

 

@y "!0

 

 

 

Pr(x X x + ")

 

=

@

lim

F (x + "; y) F (x; y)

 

 

 

 

FX(x + ") FX (x)

 

 

 

@y "!0

 

 

 

 

@

 

 

 

 

@

F (x + "; y)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

lim

 

@x

 

 

 

 

 

 

 

 

 

 

 

fX(x + ")

 

 

 

 

 

 

@y "!0

 

 

 

 

 

@2 F (x; y)

=@x@y

fX(x)

=f(x; y): fX(x)

The conditional mean or conditional expectation is the function

Z 1

m(x) = E(Y j X = x) = yfY jX (y j x) dy:

1

The conditional mean m(x) is a function, meaning that when X equals x; then the expected value of Y is m(x):

Similarly, we de…ne the conditional variance of Y given X = x as

2(x) = var (Y j X = x)

 

 

=E (Y m(x))2 j X = x

=E Y 2 j X = x m(x)2:

Evaluated at x = X; the conditional mean m(X) and conditional variance 2(X) are random variables, functions of X: We write this as E(Y j X) = m(X) and var (Y j X) = 2(X): For example, if E(Y j X = x) = + 0x; then E(Y j X) = + 0X; a transformation of X:

The following are important facts about conditional expectations.

Simple Law of Iterated Expectations:

E(E(Y j X)) = E(Y )

(B.8)

Proof:

E(E(Y j X)) = E(m(X))

 

1

 

=

Z 1 m(x)fX(x)dx

 

1

1

=

Z 1 Z 1 yfY jX (y j x) fX(x)dydx

 

1

1

=

Z 1 Z 1 yf (y; x) dydx

=

E(Y ):

 

Law of Iterated Expectations:

E(E(Y j X; Z) j X) = E(Y j X)

(B.9)

APPENDIX B. PROBABILITY

 

270

Conditioning Theorem. For any function g(x);

 

E(g(X)Y j X) = g (X) E(Y j X)

(B.10)

Proof: Let

 

 

h(x) = E(g(X)Y j X = x)

 

 

1

 

=

Z 1 g(x)yfY jX (y j x) dy

 

 

1

 

= g(x) Z 1 yfY jX (y j x) dy

 

=

g(x)m(x)

 

where m(x) = E(Y j X = x) : Thus h(X) = g(X)m(X), which is the same as E(g(X)Y j X) = g (X) E(Y j X) :

B.8 Transformations

Suppose that X 2 Rk with continuous distribution function FX(x) and density fX(x): Let Y = g(X) where g(x) : Rk ! Rk is one-to-one, di¤erentiable, and invertible. Let h(y) denote the

inverse of g(x). The Jacobian is

 

 

J(y) = det

@

h(y) :

 

@y0

Consider the univariate case k = 1: If g(x) is an increasing function, then g(X) Y if and only

if X h(Y ); so the distribution function of Y is

 

FY (y) = Pr (g(X) y)

 

=

Pr (X h(Y ))

 

 

 

= FX (h(Y )) :

 

Taking the derivative, the density of Y is

 

 

 

 

 

 

 

d

 

 

 

d

 

fY (y) =

 

FY (y) = fX (h(Y ))

 

h(y):

 

dy

dy

 

If g(x) is a decreasing function, then g(X) Y if and only if X h(Y ); so

 

FY (y) = Pr (g(X) y)

 

 

 

= 1 Pr (X h(Y ))

 

 

 

= 1 FX (h(Y ))

 

and the density of Y is

 

d

 

fY (y) = fX (h(Y ))

 

 

h(y):

 

dy

 

We can write these two cases jointly as

 

 

 

 

 

 

fY (y) = fX (h(Y )) jJ(y)j :

(B.11)

This is known as the change-of-variables formula. This same formula (B.11) holds for k > 1; but its justi…cation requires deeper results from analysis.

As one example, take the case X U[0; 1] and Y = log(X). Here, g(x) = log(x) and h(y) = exp( y) so the Jacobian is J(y) = exp(y): As the range of X is [0; 1]; that for Y is [0,1): Since fX (x) = 1 for 0 x 1 (B.11) shows that

fY (y) = exp( y); 0 y 1;

an exponential density.

APPENDIX B. PROBABILITY

271

B.9 Normal and Related Distributions

The standard normal density is

 

 

 

1

 

 

x2

; 1 < x < 1:

(x) =

p

 

exp

 

2

2

It is conventional to write X N (0; 1) ; and to denote the standard normal density function by(x) and its distribution function by (x): The latter has no closed-form solution. The normal density has all moments …nite. Since it is symmetric about zero all odd moments are zero. By iterated integration by parts, we can also show that EX2 = 1 and EX4 = 3: In fact, for any positive integer m, EX2m = (2m 1)!! = (2m 1) (2m 3) 1: Thus EX4 = 3; EX6 = 15; EX8 = 105; and EX10 = 945:

If Z is standard normal and X = + Z; then using the change-of-variables formula, X has

density

 

 

 

 

 

 

 

 

 

 

 

f(x) =

1

 

exp

 

(x )2

;

 

< x <

 

:

 

 

 

 

 

 

 

 

p2

 

 

2 2

!

1

 

1

 

which is the univariate normal density. The mean and variance of the distribution are and2; and it is conventional to write X N ; 2 .

For x 2 Rk; the multivariate normal density is

 

1

0

 

1

 

f(x) =

 

exp

(x )

 

 

(x )

(2 )k=2 det ( )1=2

 

2

 

 

;x 2 Rk:

The mean and covariance matrix of the distribution are and ; and it is conventional to write

X N ( ; ).

0

0

 

 

0

 

0

=2

 

respectively.

The MGF and CF of the multivariate normal are exp

 

+

=2

and exp

i

 

 

;

If X 2 Rk is multivariate normal and the elements of X are mutually uncorrelated, then= diagf 2j g is a diagonal matrix. In this case the density function can be written as

f(x) =

 

(2 )k=2 1

 

k exp

 

 

 

1

 

1

)2

1

 

 

2

k

k

)2

k !!

 

 

 

1

 

 

 

 

 

 

(x

 

 

 

= 2

+

 

 

+ (x

 

= 2

 

 

k

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

=

 

1

 

exp

 

xj j

 

 

 

 

 

 

 

 

 

 

 

jY

 

 

 

 

!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 j2

 

 

 

 

 

 

 

 

 

 

 

 

 

=1 (2 )1=2 j

 

 

 

 

 

 

 

 

 

 

 

 

 

which is the product of marginal univariate normal densities. This shows that if X is multivariate normal with uncorrelated elements, then they are mutually independent.

Theorem B.9.1 If X N ( ; ) and Y = a + BX with B an invertible matrix, then Y

N (a + B ; B B0) :

Theorem B.9.2 Let X N (0; Ir) : Then Q = X0X is distributed chi-square with r degrees of

freedom, written 2.

 

 

 

r

 

 

 

Theorem B.9.3 If Z N (0; A) with A > 0; q q; then Z0A 1Z q2:

 

Theorem B.9.4 Let Z N (0; 1) and Q

 

r2 be independent. Then Tr = Z=

Q=r is distributed

as student’s t with r degrees of freedom.

 

p

APPENDIX B. PROBABILITY

272

Proof of Theorem B.9.1. By the change-of-variables formula, the density of Y = a + BX is

 

1

 

(y

 

 

Y

)0 1

(y

 

 

Y

)

f(y) =

 

exp

 

 

Y

 

 

 

!; y 2 Rk:

(2 )k=2 det ( Y )1=2

 

 

 

 

2

 

 

 

 

 

where Y = a+B and Y = B B0; where we used the fact that det (B B0)1=2 = det ( )1=2 det (B) :

Proof of Theorem B.9.2. First, suppose a random variable Q is distributed chi-square with r degrees of freedom. It has the MGF

 

 

 

Eexp (tQ) =

1

 

 

1

 

 

 

 

xr=2 1 exp (tx) exp (

 

x=2) dy = (1

 

2t) r=2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z0

2r 2r=2

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the fact that

 

 

a

 

1 exp ( by) dy = b

 

a (a); which can be found

where the second equality uses

 

 

 

 

 

 

 

 

 

0 y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

by applying change-of-variables to the

 

gamma function. Our goal is to calculate the MGF of

 

 

 

 

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q = X0X and show that it equals (1

 

2t) r=2 ; which will establish that Q

 

2.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

r

Z

2

 

where the Zj

 

 

 

 

 

 

r

 

 

 

 

Note that we can write Q = X0X =

j=1

 

are independent N (0; 1) : The

distribution of each of the Zj2 is

 

 

 

 

 

 

 

 

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j

 

 

= 2 Prpy

 

j

x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pr

Z2

 

y

 

 

 

 

 

 

 

 

(0

 

 

Z

 

 

 

 

y

)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

2 Z0

 

 

 

p

 

exp

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

2

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

Z0

 

 

 

 

1

 

 

 

 

s 1=2 exp

 

s

 

 

ds

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21

 

21=2

2

 

 

 

 

 

 

 

 

 

using the change–of-variables s = x

 

and the fact

 

= p

 

: Thus the density of Zj is

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

f1(x) =

 

 

21

1

21=2 x 1=2 exp

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= (1 2t) 1=2 :

 

 

which is the 12 and by our above calculation has the MGF of Eexp tZj2

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the MGF of Q =

r

2

 

 

Since

the

Zj are

mutually independent,

(B.6)

 

implies

that

j=1 Zj

is

h

 

 

 

 

 

 

 

 

P

 

 

i

r = (1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1

 

2t) 1=2

 

2t) r=2 ; which is the MGF of the r2 density as desired:

 

 

 

Proof of Theorem B.9.3. The fact that A > 0 means that we can write A = CC0 where C is non-singular. Then A 1 = C 10C 1 and

Thus

C 1Z N 0; C 1AC 10 = N 0; C 1CC0C 10 = N (0; Iq) :

Z0A 1Z = Z0C 10C 1Z = C 1Z 0 C 1Z q2:

 

Proof of Theorem B.9.4. Using the simple law of iterated expectations, Tr has distribution

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]