
- •Санкт-Петербургский национальный исследовательский университет
- •Введение
- •Часть 1. Надежность технических систем
- •Вероятностная оценка надежности технической системы
- •Экспоненциальный закон надежности
- •Системы, резервированные по методу голосования
- •Резервированные системы с параллельным включением резервных элементов
- •Вопросы
- •Простейший поток событий и марковские модели функционирования технической системы
- •Потоки событий. Простейший поток и его свойства
- •Аппроксимация потока редких событий пуассоновским потоком
- •Марковские модели функционирования технической системы
- •Непрерывные цепи Маркова
- •Резервированные системы с восстановлением. Уравнения Колмогорова
- •Вопросы
- •Аппаратурная и информационная надежность навигационной системы
- •Часть 2. Техническая диагностика
- •Основные принципы проектирования средств диагностирования
- •Назначение и достоверность средств диагностирования
- •Математические модели объектов диагностирования
- •Модели безынерционных преобразователей
- •Динамические модели
- •Логико-динамические модели мультирежимных систем
- •Иерархический подход к проектированию и организации средств диагностирования
- •Организация диагностирования. Безусловные и условные диагностические эксперименты
- •Диагностические экспертные системы
- •Структура средств диагностирования навигационной системы
- •Вопросы
- •Методы тестового диагностирования
- •Тестовое диагностирование безынерционных преобразователей
- •Тестовое диагностирование динамических устройств
- •Тестовое диагностирование дискретных устройств. Общий подход
- •Тестовое диагностирование линейных дискретных устройств. Структурный подход
- •Тестовое диагностирование линейных дискретных устройств. Абстрактный подход
- •Тестовое диагностирование аналоговых линейных устройств
- •Тестовое диагностирование мультирежимных систем
- •Принципы тестового диагностирования мультирежимных систем
- •Тестовое диагностирование процессора
- •Тестовое диагностирование распределенных информационно-управляющих систем
- •Структура средств диагностирования
- •Построение проверяющего теста. Управляемость и наблюдаемость периодически нестационарной системы
- •Синтез модели системы обмена
- •Методы функционального диагностирования
- •Методы функционального диагностирования для обнаружения отказов
- •Функциональное диагностирование при поиске структурных нарушений
- •Функциональное диагностирование при поиске отказов в пространстве сигналов
- •Функциональное диагностирование при поиске отказов в пространстве параметров
- •Функциональное диагностирование информационных отказов в интегрированной навигационной системе
- •Вопросы
- •Приложение 1. Основные понятия теории вероятностей
- •Приложение 2. Модели представления знаний.
- •Приложение 3. Основы нечеткого анализа
- •Литература
Функциональное диагностирование информационных отказов в интегрированной навигационной системе
В
настоящем подразделе мы завершаем
обсуждение вопросов функционального
диагностирования, но в отличие от
предшествующего материала речь пойдет
о диагностировании не аппаратурных, а
информационных отказов. При этом вниманию
читателя предлагается очень короткое
рассмотрение основной идеи без углубления
в непростую математику, составляющую
основание известных решений [9].
Информационный отказ был определен в
разделе 3. Напомним, что ситуация
информационного отказа навигационной
системы характеризуется возникновением
скачка погрешности выработки навигационных
параметров при отсутствии аппаратурных
отказов. Таким образом, диагностирование
информационных отказов предполагает
определение и анализ погрешности.
Оценить погрешность выработки некоторого
навигационного параметра можно только,
располагая его эталонным значением.
На практике таким эталоном (конечно,
неидеальным) может служить информация
от другой навигационной системы. Для
получения хорошей оценки погрешности
диагностируемой системы желательно,
чтобы эталонная система была бы, как
можно, точнее. Однако для целей
диагностирования можно воспользоваться
и системой, аналогичной диагностируемой.
Так на рис. 6.22 для ФД некоторой ИНС
используется аналогичная ей ИНС.
Сформируем разность соответствующих
выходных параметров этих ИНС. Значение
разности не будет зависеть от динамики
изменения рассматриваемого навигационного
параметра (по этой причине подход
называется инвариантным). Так, например,
для разности
значений широты
и
,
выработанных двумя разными ИНС с
погрешностями
и
соответственно, имеем:
,
т.е.
ее значение не зависит от истинного
значения
широты и равно разности индивидуальных
погрешностей выработки широты разными
ИНС. Таким образом, возникает возможность
анализа реализаций погрешностей, а
точнее, реализаций разности погрешностей
с целью диагностирования возникающих
скачков. Тот факт, что мы имеем дело с
разностью погрешностей, а не с отдельной
погрешностью, не является существенным,
поскольку целью диагностирования
является обнаружение скачков погрешности
заметно превышающих как номинальное
значение погрешности ИНС, так и разность
номинальных погрешностей.
Для анализа погрешности необходимо определиться с ее моделью. Вопросы моделирования погрешности ИНС достаточно хорошо исследованы в литературе. Известно, что она описывается моделью динамической системы, в которой можно выделить две характерные части. Первая часть отражает зависимость погрешностей выработки основных навигационных параметров от инструментальных погрешностей чувствительных элементов и обычно представляется в виде обыкновенных дифференциальных уравнений. Вторая часть описывает погрешности самих чувствительных элементов, и осуществляется это обычно на языке стохастических дифференциальных уравнений. В результате описание погрешности имеет вид:
.
Особенностью
этой хорошо нам знакомой динамической
модели является то, что в правой части
уравнения вместо детерминированного
входного сигнала u
стоит случайный процесс (случайная
функция времени)
,
представляющий собой векторный
гауссовский белый шум единичной
интенсивности. При этом матрицаG(t)
определяет интенсивность процесса
.
В результате
является случайным процессом. Этот
процесс линейный в виду линейности
уравнений. Кроме того, он марковский
(вероятность любого последующего
состояния зависит лишь от его текущего
значения), что особенно хорошо видно
при переходе к дискретизованному
представлению.
Будем считать, что скачки погрешности описываются дополнительным слагаемым в правой части уравнения модели, т.е. приходим к задаче диагностирования стохастической динамической модели в пространстве сигналов. Если рассуждать чисто формально, то для решения задачи нам достаточно по описанным в предыдущих разделах правилам построить банк наблюдателей, каждый из которых будет настроен на свое техническое состояние и будет формировать соответствующую оценку состояния диагностируемой системы (модели погрешности). Однако воспользоваться этими правилами мы не сможем ввиду лишь формальной схожести сопоставляемых описаний, а именно, ввиду того, случайный процесс w в отличие от детерминированной функции u описывается на вероятностном языке. Тем не менее, решение задачи хорошо известно, и решается она методами теории фильтрации. Известные решения структурно совпадают с рассмотренными в предыдущих подразделах. Отличие же заключается в том, что вместо банка наблюдателей состояния необходимо использовать банк фильтров Калмана, ну, и конечно, модель, используемая в этих фильтрах описывает погрешность выработки параметров, а не структуру устройства НС.
Использование только двух ИНС не позволяет при обнаружении скачка погрешности в анализируемой разности указать на отказавшую ИНС. Такая возможность появляется, если таких ИНС три. При этом используется тот факт, что искаженными оказываются лишь те попарные разности, которые формируются с участием ИНС, содержащей нарушение.
На рис.6.23 поясняется роль СД информационных отказов (ИСД) в функционировании НС, где для простоты навигационные подсистемы НС представлены тремя ИНС. Выходные параметры и диагностические признаки этих ИНС анализируются в СД. При обнаружении отказов в какой-либо ИНС, ее выходная информация блокируется, т.е. исключается из процедуры формирования комплексных навигационных параметров. Кроме того, для отказавшей ИНС указывается адекватная процедура ее восстановления. На рисунке НП 1(2,3) и ПР 1(2,3) обозначают соответственно навигационные параметры и диагностические признаки, вырабатываемые в ИНС 1(2,3), КНП – комплексные НП. Процедура блокировки данных от неисправных ИНС условно отражена на рисунке в виде схем (И) логического умножения.