Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
sm.docx
Скачиваний:
217
Добавлен:
20.03.2016
Размер:
1.21 Mб
Скачать

14.Мощность и электромагнитный момент синхронной машины

Активная мощность. Чтобы установить, как зависит активная мощность Р синхронной машины от угла нагрузки θ, рассмотрим упрощенные векторные диаграммы, построенные при Ra = 0. Из диаграммы, приведенной на рис. 6.37, а для неявнополюсной машины, можно установить, что общая сторона треугольников ОАВ и АСВ АВ ОA sin θ = AC cos φ или с учетом модулей соответствующих векторов

(6.30)

Е0 sin θ = Ia Xсн cos φ.

Рис. 6.37. Упрощенные векторные диаграммы неявнополюсной и явнополюсной синхронной машины

Следовательно, активная мощность синхронной машины

(6.31)

Р = mUIа cos φ = (mUЕ0/Xсн)sinθ.

Векторная диаграмма для явнополюсной машины приведена на рис. 6.37,б. Так как φ = ψ - 0, то активная мощность

P = mUIа cos(ψ - 0) =

= mU (Ia sin ψ sin θ + Iа cos ψ cos θ) =

(6.32)

= mU (Id sin θ + Iq cos θ).

Чтобы определить токи Id и Iq , спроектируем модули векторов ЭДС É0, напряжения Ú, падений напряжений - d Xd и — a Xq на оси — параллельную и перпендикулярную вектору É0(рис. 6.37,б). Тогда Е0 = U cos θ + Id Xd ; U sin θ = Iq Xq , откуда

(6.33)

Id = (Е0 - Ucosθ)/Xd ; Iq = U sin θ/Xq .

Подставляя значение Id и Iq в (6.32), получаем

P = mU{[(Е0 - U cos θ)/Xd ] sin θ + (U sinθ /Xq ) cos θ},

или, используя формулу sin 2θ = 2sin θ cos θ,

(3.34)

P = (mUE0/Xd ) sin θ + (mU2/2) (1/Xq - 1/Xd ) sin 2θ.

Электромагнитный момент. В синхронных машинах большой и средней мощности потери мощности в обмотке якоря ΔРа эл = mIa2Ra малы по сравнению с электрической мощностью Р, отдаваемой (в генераторе) или потребляемой (в двигателе) обмоткой якоря. Следовательно, если пренебречь величиной ΔРа эл, то можно считать, что электромагнитная мощность машины Рэм =Р. Электромагнитный момент пропорционален мощности Рэм, поэтому для неявнополюсной и явнополюсной машин соответственно

(3.35)

М = Рэм1 = [mUE0/(ω1Xсн )] sin θ;

(3.36)

М = Рэм 1 = [mUE0 /(ω1 Xd )] sinθ + [mU2/(2ω1 )] (1/Xq - 1/Xd ) sin 2θ.

Рис. 6.38. Угловые характеристики   явнополюсной   и   неявнополюсной машин

Рис. 6.39. Характер взаимодействия потоков  Фв и  ΣФ  в  синхронной

машине

При неявнополюсной машине зависимость М = f(θ) представляет собой синусоиду, симметричную относительно осей координат (рис. 6.38, кривая 1). При явнополюсной машине из-за неодинаковой магнитной проводимости по различным осям d ≠ Xq ) возникает реактивный момент

(6.37)

Мр = [mU2 /(2ω1 )] (1/Хq - 1/Хd ) sin 2θ

Он появляется в результате стремления ротора ориентироваться по оси результирующего поля, что несколько искажает синусоидальную зависимость М = f(θ) (кривая 2). Реактивный момент возникает даже при отсутствии тока возбуждения (когда Е0 = 0); он пропорционален sin 2θ (кривая 3). Так как электромагнитная мощность Рэм пропорциональна моменту, то приведенные на рис. 6.38 характеристики в другом масштабе представляют собой зависимостиРэм = f (θ) или при принятом предположении (ΔРа эл = 0) — зависимости Р = f (θ). Кривые М = f (θ) и Рэм = f (θ) называют угловыми характеристиками.

Физически полученная форма кривой М =f (θ) обусловлена тем, что потоки Фв и ΣФ сдвинуты между собой на тот же угол θ, на который сдвинуты векторы É0 и Ú (векторы Фв и ΣФ опережают É0 и Ú на 90°). Поэтому если угол θ = 0 (холостой ход), то между ротором и статором существуют только силы притяжения f, направленные радиально (рис. 6.39, а),и электромагнитный момент равен нулю.

При θ > 0 (генераторный режим) ось потока возбуждения Фв (полюсов ротора) под действием вращающего момента Мвн опережает ось суммарного потока ΣФ на угол θ (рис. 6.39, б), вследствие чего электромагнитные силы, возникающие между ротором и статором, образуют тангенциальные составляющие, которые создают электромагнитный тормозной момент М. Максимум момента соответствует значению θ = 90°, когда ось полюсов ротора расположена между осями «полюсов» суммарного потока ΣФ. При θ < 0 (двигательный режим) ось потока возбуждения под действием тормозного момента нагрузки Мвн отстает от оси суммарного потока (рис. 6.39, в), вследствие чего тангенциальные составляющие электромагнитных сил, возникающие между ротором и статором, создают электромагнитный вращающий момент М.

Синхронные машины.

15.Синхронные двигатели. Синхронные компенсаторы.

   В отличие от асинхронного двигателя частота вращения синхронного двигателя постоянна при различных нагрузках. Синхронные двигатели находят применение для привода машин постоянной скорости (насосы, компресоры, вентиляторы).        В статоре синхронного электродвигателя размещается обмотка, подключаемая к сети трехфазного тока и образующая вращающееся магнитное поле. Ротор двигателя состоит из сердечника с обмоткой возбуждения. Обмотка возбуждения через контактные кольца подключается к источнику постоянного тока. Ток обмотки возбуждения создает магнитное поле, намагничивающее ротор.         Роторы синхронных машин могут быть явнополюсными (с явновыраженными полюсами) и неявнополюсными (с неявновыраженными полюсами). На рис. 1а изображен сердечник 1 явнополюсного ротора с выступающими полюсами. На полюсах размещены катушки возбуждения 2. На рисунке 1б изображен неявнополюсной ротор, представляющий собой ферромагнитный цилиндр 1. На поверхности ротора в осевом направлении фрезеруют пазы, в которые укладывают обмотку возбуждения 2.

Рис. 1

Рассмотрим принцип работы синхронного двигателя на модели (рис. 11).

    Вращающееся магнитное поле статора представим в виде магнита 1. Намагниченный ротор изобразим в виде магнита 2. Повернем магнит 1 на угол α. Северный магнитный полюс магнита 1 притянет южный полюс магнита 2, а южный полюс магнита 1 - северный полюс магнита 2. Магнит 2 повернется на такой же угол α. Будем вращать магнит 1. Магнит 2 будет вращаться вместе с магнитом 1, причем частоты вращения обоих магнитов будут одинаковыми, синхронными,  n2 = n1.

Синхронные компенсаторы.

Синхронным компенсатором называется синхронный двигатель облегчённой конструкции, предназначенный для работы на холостом ходу. Синхронные компенсаторы предназначаются для компенсации коэффициента мощности сети и поддержания нормального уровня напряжения сети в районах сосредоточения потребительских нагрузок.

Синхронным компенсатор - синхронная машина, работающая в двигательном режиме без нагрузки на валу при изменяющемся токе возбуждения.

В перевозбужденном режиме ток опережает напряжение сети, т. е. является по отношению к этому напряжению емкостным, а в недовозбужденных — отстающим, индуктивным. В таком режиме синхронная машина превращается в компенсатор — в генератор реактивного тока.

Нормальным являемся перевозбужденный режим работы синхронного компенсатора, когда он отдает в сеть реактивную мощность. 

Синхронные компенсаторы лишены приводных двигателей и с точки зрения режима своей работы в сущности являются синхронными двигателями, работающими на холостом ходу. В конструктивном отношении компенсаторы принципиально не отличаются от синхронных генераторов. Они имеют такую же магнитную систему, систему возбуждения, охлаждения и др. Все синхронные компенсаторы средней мощности имеют воздушное охлаждение и выполняются с возбудителем и подвозбудителем.В связи с тем, что синхронные компенсаторы не предназначены для выполнения механической работы и не несут активной нагрузки на валу, они имеют механически облегченную конструкцию. Компенсаторы выполняются как сравнительно тихоходные машины (1000 — 600 об/мин) с горизонтальным валом и явнополюсным ротором. В качестве синхронного компенсатора может быть использован генератор, работающий вхолостую при соответствующем возбуждении. В перевозбужденном генераторе появляется уравнительный ток, являющийся чисто индуктивным относительно напряжения генератора и чисто емкостным относительно сети.

16. Реактивный синхронный двигатель.

Принцип действия и устройство. Реактивным двигателем называют синхронный двигатель с явнополюсным ротором без обмотки возбуждения и постоянных магнитов, у которого магнитный поток создается реактивным током, проходящим по обмотке статора. Вращающий момент в таком двигателе возникает из-за различия магнитных проводимостей по продольной и поперечной осям. При этом явновыраженные полюсы ротора стремятся ориентироваться относительно поля так, чтобы магнитное сопротивление для силовых линий поля было минимальным.

Электромагнитный момент и угловые характеристики. Электромагнитный момент реактивного синхронного двигателя

М = Рэм 1 = [mU2/(2ω1 )] (1/Xq + 1/Xd ) sin2θ.

Векторная диаграмма реактивного двигателя  (а),его   угловые   характеристики   при различных значениях Rа /Xd (б)

Преимущества и недостатки реактивного двигателя. Реактивные двигатели проще по конструкции, надежнее в работе и дешевле по сравнению с синхронными двигателями с обмоткой возбуждения на роторе; при их использовании не требуется иметь источник постоянного тока для питания цепи возбуждения. Основными недостатками реактивного двигателя являются сравнительно небольшой пусковой момент и низкий cos φ, не превышающий обычно 0,5. Это объясняется тем, что магнитный поток создается только за счет реактивного тока обмотки якоря, значение которого из-за повышенного сопротивления магнитной цепи машины довольно велико.

Машины постоянного тока

17. Конструкция машин постоянного тока

Машины постоянного тока – обратимые. Они могут работать и как генератор и как двигатель. Конструктивно генераторы и двигатели постоянного тока устроены одинаково. На рис. 5.1 показан продольный разрез двигателя постоянного тока.

рис. 5.1 - Общий вид двигателя постоянного тока:

1-коллектор, 2 - щеточный аппарат, 3 – якорь, 4 – главные полюса, 5 – катушка обмотки возбуждения, 6 – станина, 7 и 12 подшипниковые щиты, 8 - вентилятор, 9 – лобовые части обмотки статора, 10 - вал, 11-лапы

Машины постоянного тока состоит из двух основных частей: статора – неподвижной части и подвижной части – ротора. В машинах постоянного тока ротор называется якорем.

Основными конструктивными элементами машин постоянного тока (рис. 5.1) являются станина 6 с закрепленными на ней главными 4 и добавочными полюсами, вращающийся якорь 3 с обмоткой возбуждения 5 и коллектором 1 и щеточный аппарат 2. В машинах малой и средней мощностей станина одновременно служит и корпусом, к которому крепятся лапы 11 для установки машины, и частью магнитопровода. По ней замыкается магнитный поток. В большинстве машин станина выполнена массивной, из стальных труб, либо сварной из листов конструкционной стали. В ряде машин станину выполняют шихтованной.

К внутренней поверхности станины крепят главные и добавочные полюсы. Сердечники главных полюсов массивные либо набраны из листов стали толщиной 1 — 2 мм. Сердечники добавочных полюсов, как правило, массивные. На главных полюсах располагаются обмотки возбуждения; их МДС создают рабочий поток машины. Обмотки добавочных полюсов, расположенных по поперечным осям машины, служат для обеспечения нормальной коммутации. Магнитопровод якоря шихтуется из листов электротехнической стали. В машинах малой мощности сердечник якоря насаживается непосредственно на вал со шпонкой и фиксируется в осевом направлении буртиком вала и кольцевой шпонкой. С торцов якоря для предотвращения распушения листов во время работы установлены нажимные шайбы, совмещенные с обмоткодержателями.

На валу 10 двигателя расположен якорь двигателя. Сердечник якоря представляет собой цилиндрический магнитопровод 6, в пазах которого расположена обмотка якоря 7.

Якорь машины постоянного тока в настоящее время выполняется, как правило, барабанного типа. Он состоит из: сердечника якоря 4, набираемого из листовой электротехнической стали толщиной 0,35–0,5 мм. Для уменьшения потерь от вихревых токов листы изолируются друг от друга лаковой или оксидной пленкой. На наружной поверхности сердечника якоря имеются пазы, равномерно распределенные по окружности, в которые укладывается обмотка якоря 5. Обмотка выполняется из специальных медных обмоточных проводов круглого или прямоугольного сечения. Элементы обмотки тщательно изолируются между собой и от сердечника и закрепляются в пазах при помощи клиньев или бандажей из стальной проволоки. Части обмотки, выступающие с торцов сердечника (лобовые соединения) крепятся бандажами.

Секции обмотки якоря присоединены к коллектору 1. К нему же прижимаются пружинами неподвижные щетки 2. Закрепленный на валу двигателя коллектор состоит из ряда изолированных от него и друг от друга медных пластин. С помощью коллектора, и щеток осуществляется соединение обмотки якоря с внешней электрической цепью. У двигателей они, кроме того, служат для преобразования постоянного по направлению тока внешней цепи в изменяющийся по направлению ток в проводниках обмотки якоря.

Обмотки якорей двухслойные. В машинах мощностью до 15 — 20 кВт они выполнены из круглого провода и уложены в полузакрытые пазы. В пазовых частях обмотка крепится пазовыми клиньями, в лобовых - бандажами из стеклоленты или немагнитной стальной проволоки, которые прижимают их к обмоткодержателям. В машинах большой мощности катушки обмотки якоря наматывают из прямоугольного провода и укладывают в открытые пазы. Крепление обмотки либо такое же, как и в машинах малой мощности, т. е. клиньями в пазовой и бандажами в лобовой части, либо бандажами и в пазовой, и в лобовой части. Обмотка якоря присоединяется к коллектору, закрепленному на валу машины. Обычно коллектор выполняется цилиндрического типа, реже торцевого. Продольный разрез цилиндрического коллектора приведен на рис. 5.2.

Рис. 5.2

1 - передний нажимной конус; 2 — пластины коллектора ; 3 — втулка коллектора; 4 — изоляционная манжета; 5 —задний нажимной конус

Коллектор состоит из коллекторных пластин (ламелей) 2, изолированных друг от друга и от элементов крепления миканитовыми прокладками и манжетами 4. С торцов пластины стягиваются нажимными конусами (фланцами) 5. Благодаря специальному выступу (ласточкину хвосту) пластины сжимаются между собой, образуя жесткую конструкцию. Затем коллектор обтачивается, чтобы его рабочая поверхность была строго цилиндрической.

Для соединения обмотки якоря с внешней цепью служит щеточный аппарат. Обычно он состоит из щеточной траверсы с пальцами и щеткодержателей со щетками. Щеткодержатель состоит из обоймы, в которой располагается щетка, и нажимной пружины, прижимающей щетку к коллектору. Все одноименные щетки соединяются между собой сборными шинами, которые выводятся на зажимы машины, как концы обмотки якоря. Обмотка якоря впаивается непосредственно в выступающие части коллекторных пластин или при помощи специальных соединительных проводников (петушков), если разница в диаметрах коллектора и якоря велика.

Дополнительные полюса с расположенной на них обмоткой уменьшают искрение между щетками и коллектором машины. Обмотку дополнительных полюсов соединяют последовательно с обмоткой якоря и на электрических схемах часто не изображают.

Кроме двигателей, имеющих два главных полюса, существуют машины постоянного тока с четырьмя и бόльшим количеством главных полюсов. При этом соответственно увеличивается количество дополнительных полюсов и комплектов щеток.

На корпусе также расположены табличка с паспортными данными и клеммная коробка.

Клеммы на щитке коробки маркируются: начало и конец обмотки якоря А1и А2; параллельной обмотки возбуждения – Е1и Е2, обмотки дополнительных полюсов – В1и В2.

18.Принцип работы генератора и двигателя постоянного тока

Принцип действия генератора основан на законе электромагнитной индукции — индуцировании электродвижущей силы в прямоугольном контуре (проволочной рамке), находящейся в однородном вращающемся магнитном поле.

Рис. 1 В прямоугольном контуре вращается постоянный магнит.

Допустим, что однородное магнитное поле, создаваемое постоянныммагнитом вращается вокруг своей оси в проводящем контуре (проволочной рамке) с равномерной угловой скоростью . Две равные порознь вертикальные стороны контура (см. рисунок) являются активными, так как их пересекают магнитные линии магнитного поля. Две равные порознь горизонтальные стороны контура — не активные, так как магнитные линии магнитного поля их не пересекают, магнитные линии скользят вдоль горизонтальных сторон, электродвижущая сила в них не образуется.

В каждой из активных сторон контура индуктируется электродвижущая сила, величина которой определяется по формуле:

 и , где

 и  — мгновенные значения электродвижущих сил, индуктированных в активных сторонах контура, в вольтах;

 — магнитная индукция магнитного поля в вольт-секундах на квадратный метр (ТлТесла);

 — длина каждой из активных сторон контура в метрах;

 — линейная скорость, с которой вращаются активные стороны контура, в метрах в секунду;

 — время в секундах;

 и  — углы, под которыми магнитные линии пересекают активные стороны контура.

Так как электродвижущие силы, индуктированные в активных сторонах контура, действуют согласно друг с другом, то результирующая электродвижущая сила, индуктируемая в контуре,

будет равна , то есть индуктированная электродвижущая сила в контуре изменяется посинусоидальному закону.

Если в контуре вращается однородное магнитное поле с равномерной угловой скоростью, то в нём индуктируется синусоидальная электродвижущая сила.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]