
- •1.Задачи ,приводящие к понятию производной:
- •2.Производная функции.Геометрический и механический смыслы производной.Производные основных элементарных функций.Производная сложной функции.
- •3.Дифференциал функции.Аналитический и геометрический смысл дифференциала
- •4.Первообразная функции. Неопределенный интеграл, его свойства. Таблица основных неопределенных интегралов.
- •7.Случайные события. Классическое и статистическое определения вероятности случайного события. Виды случайных событий
- •8.Основные теоремы теории вероятностей.Повторные независимые испытания. Формула Бернулли.Формула Пуассона.
- •9.Дискретные случайные величины.Закон распределения дискретной случайной величины.Основные числовые характеристики дискретнойслучайной величины и ее свойства.
- •10.Непрерывные случайные величины.Функция распределениянепрерывной случайной величины и ее свойства.
- •11.Плотность распределения вероятностей непрерывной случайной величины и ее свойства. Основные числовые характеристики непрерывной случайной величины.
- •12. Нормальный закон распределения. Вероятность попадения нормально распределенной случайнойвеличиныв заданный интервал.Правило трех сигм.
- •13. Статистическая совокупность.Генеральная и выборочная статистическиесовокупности.Статистический дискретный ряд распределения .Полигоны частот и относительных частот.
- •14.Статистический интервальный ряд распределения.Гистограммы частоти относительных частот.
- •15.Выборочные характеристики распределения.Точечные оценки основныхчисловых характеристик генеральной совокупности
- •16.Интервалтьные оценки числовых характеристик генеральной совокупности.Доверительный интервал,доверительная вероятность. Распределение Стьюдента.
- •17. Основные понятия и определения колебательных процессов. Механические колебания. Гармонические колебания. Незатухающие колебания.
- •18. Затухающие колебания. Вынужденные колебания. Резонанс. Автоколебания.
- •19. Механические (упругие) волны. Основные характеристики волн. Уравнение плоской волны. Поток энергии и интенсивность волны. Вектор Умова.
- •20. Внутреннее трение (вязкость жидкости). Формула Ньютона. Ньютоновские и неньютоновские жидкости. Ламинарное и турбулентное течение жидкости. Формула Гагена-Пуазейля.
- •21. Звук. Виды звуков. Физические характеристики звука. Характеристики слухового ощущения и их связь с физическими характеристиками звука. Шкала уровней интенсивности звука.
- •22. Закон Вебера-Фехнера. Шкала уровней громкости звука. Кривые равной громкости.
- •23. Ультразвук. Источники и приемники ультразвука, его основные свойства. Ультразвуковая эхолокация.
- •24. Действие ультразвука на вещество, клетки и ткани организма. Применение ультразвука в медицине.
- •25. Эффект Доплера и его использование в медико-биологических исследованиях
- •28. Биологические мембраны, их структура и функции. Модели мембран.
- •29. Перенос частиц через мембраны. Уравнение Фика. Применение уравнения Фика к биологической мембране. Уравнение Нернста-Планка.
- •30. Пассивный транспорт и его основные виды. Понятие об активном транспорте.
- •31. Биоэлектрические потенциалы. Потенциал покоя. Механизм генерации потенциала действия.
- •32. Переменный ток. Полное сопротивление в цепи переменного тока. Импеданс тканей организма. Дисперсия импеданса.
- •35.Поглощение света. Закон Бугера. Закон Бугера-Ламберта-Бера. Конценрационная колориметрия.Нефелометрия.
- •36.Рассеяние света.Явление Тиндаля.Молекулярное рассеяние,Закон Рэлея.Комбинационное рассеяние.
- •37.Свет естественный и поляризованный.Поляризатор и анализатор. Закон Малюса
- •38.Поляризация света при отражении и преломлении на границе двух диэлектриков. Закон Брюстера.
- •39.Поляризация света при двойном лучепреломлении. Призма Николя. Вращение плоскости поляризации. Закон Био.
- •43.Люминесценция, ее виды. Механизм и свойства люминесценции. Правило Стокса.
- •44.Применение люминофоров и люминесцентного анализа в медицине и фармации.
- •45.Вынужденное излучение. Инверсная заселенность уровней. Основные элементы лазера.
- •47.Свойства лазерного излучения. Применение лазерного излучения в медицине.
- •49.Первичные процессы взаимодействия рентгеновского излучения веществом: когерентное рассеяние, комптон-эффект, фотоэффект.
- •50.Физические основы применения рентгеновского излучение в медицине. Рентгенодиагностика. Современные рентгеновские компьютерные томографы.
- •51.Явление радиоактивности. Виды радиоактивного распада. Основной закон радиоактивного распада.
- •52. Альфа-распад ядер и его особенности. Бета-распад, его виды, особенности и спектр. Гамма излучение ядер.
- •54.Методы радиационной медицины. Радионуклидная диагностика.
- •55.Методы радиоизотопной терапии.
- •56.Ускорители заряженных частиц и их использование в медицине.
1.Задачи ,приводящие к понятию производной:
а)о скорости движения материальной точки
б) об угле наклона касательной к графику функции
А.Пусть
некоторая материальная точка совершает
прямолинейное движение. В момент времени
t1
точка находится в положении М1. В момент
времени t2
в положении М2. Обозначим промежуток
М1,М2 через S
; t2-t1=
t.
Величина S/
t
называется средней скоростью движения.
Чтобы найти мгновенную скорость точки
в положении М1 необходимо t
устремить к нулю. Математически это
значит , что
,
Таким
образом , для нахождения мгновенной
скорости материальной точки необходимо
вычислить предел отношения приращения
функции S
к приращению аргумента t
при условии ,что t
→0
Б.
Пусть (t)
есть количество вещества прореагировавшего
за время t.
Спустя время количество
прореагировавшего вещества будет
,
т.е. за время
количество
прореагировавшего вещества
.
Поэтому средняя скорость химической
реакции за интервал времени
будет
равна
.
Чтобы найти мгновенную скорость
химической реакции в момент времени
надо
устремить
к
нулю, то есть
.
Таким образом, производная от количества прореагировавшего вещества определяет мгновенную скорость химической реакции.
Пусть
функция определена
на промежутке X,
точка
X,
дадим ей приращение
,
величина
называется
приращением аргумента. В каждой из этих
точек посчитаем значение функции
и
.
Тогда можно говорить о приращении
функции
.
2.Производная функции.Геометрический и механический смыслы производной.Производные основных элементарных функций.Производная сложной функции.
Производной функции у=ƒ(х) β точке х0 называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю.
Итак, по определению
Производная функции ƒ(х) есть некоторая функция f'(x), произведённая из данной функции.
Функция у=ƒ(х), имеющая производную в каждой точке интервала (a;b), называется дифференцируемой в этом интервале; операция нахождения производной функции называется дифференцированием.
Значение производной функции у=ƒ(х) в точке х=х0 обозначается одним из символов: ƒ'(х0), у'|x=xo или у'(х0).
Геометрический смысл производной. Рассмотрим график функции y = f ( x ):
видно, что для любых двух точек A и B графика функции:
где - угол
наклона секущей AB.
Таким
образом, разностное отношение равно
угловому коэффициенту секущей. Если
зафиксировать точку A и двигать
по направлению к ней точку B,
то неограниченно
уменьшается и приближается к 0, а секущая
АВ приближается к касательной АС.
Следовательно, предел разностного
отношения равен угловому коэффициенту
касательной в точке A. Отсюда
следует: производная
функции в точке есть угловой коэффициент
касательной к графику этой функции в
этой точке. В
этом и состоит геометрический
смысл производной.
Механический
смысл производной. Рассмотрим
простейший случай: движение материальной
точки вдоль координатной оси, причём
закон движения задан: координата x
движущейся точки – известная
функция x ( t )
времени t.
В течение
интервала времени от t0
до t0 + точка
перемещается на расстояние: x ( t0 +
) - x ( t0 )
=
,
а её средняя
скорость равна: va =
/
. При
0
значение средней скорости стремится к
определённой величине, которая
называется мгновенной
скоростью v ( t0 )
материальной точки в момент времени t0 .
Но по определению производной мы имеем:
отсюда, v ( t0 ) = x’ ( t0 ) , т.e. скорость – это производная координаты по времени. В этом и состоит механический смысл производной.Аналогично, ускорение – это производная скорости по времени: a = v’ ( t ).