- •3. Основное уравнение гидростатики в дифференциальной форме. Поверхности равного давления.
- •4. Равновесие жидкости в поле силы тяжести. Основное уравнение гидростатики в интегральной форме. Закон Паскаля. Понятие геометрического и пьезометрического напоров.
- •5. Сила давления на плоскую стенку. Центр давления.
- •6. Уравнение расхода жидкости в трубопроводах и каналах. Уравнение неразрывности. Численные значения оптимальных скоростей жидкости и газов.
- •7. Уравнение Бернелли для идеальной и реальной жидкостей.
- •8. Геометрический и физический смысл уравнения Бернулли.
- •9. Дроссельные расходомеры. Принцип работы.
- •10. Режимы движения жидкостей и газов в трубопроводах и каналах.
- •11. Потери напора по длине. Порядок определения коэффициента трения.
- •V-средняя скорость движения
- •12.Местные гидравлические сопротивления. Потери напора на местных сопротивлениях.
- •13.Виды потерь напора(давлений) в трубопроводах. Расчетные формулы.
- •14. Истечение жидкости через отверстия и насадки. Расчет скорости истечения и расхода жидкости при постоянном напоре.
- •15.Основные уравнения для расчета трубопровода.
- •16.Характеристика трубопровода. Понятие гидравлического уклона
- •17.Последовательное и параллельное соединение трубопровода.
- •18. Основные параметры насосов.
- •19.Напор, развиваемый насосом. Способы его определения.
- •20. Полезная мощность. Мощность на валу насоса. Кпд.
- •21.Принцип работы центробежного насоса.
- •22. Движение жидкости в рабочем колесе центробежного насоса. Параллелограмм скоростей. Основные уравнения центробежного насоса.
- •23. Законы пропорциональности центробежного насоса.
- •24. Характеристики центробежного насоса.
- •25. Рабочая точка центробежного насоса, работающего на сеть. Способы регулирования подачи насоса. Потребляемая мощность.
- •26. Параллельное соединение центробежных насосов. Рабочая точка.
- •27. Последовательное соединение центробежных насосов. Рабочая точка.
- •28. Подбор насосов, работающих на сеть.
- •29. Высота всасывания центробежных насосов.
- •30. Поршневой насос простого действия. Средняя объемная подача.
- •31. Поршневой насос двойного действия. Средняя объемная подача.
- •32. Графики подачи поршневых насосов. Степень неравномерности подачи.
- •33. Рабочая точка поршневого насоса, работающего на сеть. Способы регулирования подачи.
7. Уравнение Бернелли для идеальной и реальной жидкостей.
Уравнение Бернулли для струйки идеальной жидкости. движение жидкости в трубопроводах и каналах осуществляется за счет энергии самой жидкости . чаще всего необходимо энергии для перемещения передавай передается жидкости с помощью насосов.
Механическая энергия жидкости состоит из трех видов энергии: энергии положение, давления и кинетической энергии . В гидравлике под напором понимает энергию жидкости относительно единица веса. в этом случае напор измеряется в метрах что используется при его графическом представлении. Полный гидродинамический напор действующей жидкости равен сумме3 напоров геометрического напора( Удельная потенциальная энергия положения) , пьезометрического напора (Удельная потенциальная энергия давления) и скоростного напора Удельная кинетическая энергия).
Уравнение Бернулли для потока идеальной жидкости
В потоке идеальной жидкости, движущийся по трубопроводам и каналам, вследствие отсутствия потери энергии при движении, полный гидродинамический напор жидкости остается постоянным. это условие является частным случаем законы сохранения энергии и записывается для двух сечений потока жидкости равенство полное гидростатический напор от называют уравнением Бернулли или
в процессе движения идеальной жидкости один вид энергии может превращаться в другой , Однако полная энергия при этом остается без изменений.
Уравнение Бернулли для реальной жидкости
При движении реальной вязкой жидкости вследствие влияния сил молекулярного сцепления между стенкой и жидкостью происходит торможение потока приводящее к скольжению слоев жидкости друг относительно друга на вене и возникновению напряжений трения между слоями. Кроме того движения вязкой жидкости часто сопровождается вращением частиц , вихреобразованием и перемешиванием . Все это требует затрат энергии жидкости, поэтому энергия реальной жидкости не остается постоянной, как случается идеальной жидкостью, а постоянно расходуется на Преодоление сопротивлений и , следовательно уменьшается вдоль потока . Из-за неравномерного распределения скоростей потока реальной жидкости приходится вводить в рассмотрение среднюю скорость , а также средние значения Удельной энергии жидкости в данном сечении . при этом предполагается, что гидростатический напор в пределах сечения , есть величина одинакова для всех точек данного сечения.
В Результате полная Удельная энергия жидкости в течении 3-3 будет больше полной удельной энергии в сечении 4-4 на величину потерянной Удельной энергии . Потерянная удельная энергия или потерянный напор обозначаетсяи имеют также линейную размерность. уравнение Бернулли для реальной жидкости, таким образом представляет собой баланс энергии в потоке с учетом потерь.
8. Геометрический и физический смысл уравнения Бернулли.
Физический смысл
геометрический напор(z) характеризует запас удельной потенциальной энергии положения пьезометрический напор() характеризует запас энергии жидкости обусловленный ее давлением относительно давления сравнения (часто атмосферного давления . Удельная потенциальная энергия давления) геометрический и пьезометрический напоры присущи жидкости находящейся в покое, поэтому их сумму называют гидростатическим напором. скоростной напор( ) характеризует запас энергии обусловленный скоростью ее движения. (Удельная кинетическая энергия)
сумма трех наборов называется полный гидродинамический напор.
Геометрический смысл
геометрический напор равен расстоянию от плоскости сравнения до рассматриваемой точке жидкости (для потока жидкости до точки совпадающий с центром тяжести рассматриваем его сечения) пьезометрический напор это расстояние в пьезометрической трубке (To есть расстояние до рассматриваемой точки от плоскости).