
- •Курс общей физики,
- •Глава 1. Кинематика материальной точки
- •Глава 14. Диэлектрики. Электроемкость
- •Глава 30. Тепловое излучение
- •Глава 36. Строение и свойства атомного ядра
- •1.2. Скорость
- •1.3. Ускорение и его составляющие
- •1.4. Угловая скорость и угловое ускорение
- •Глава 2. Динамика материальной точки
- •2.1. Первый закон Ньютона. Масса. Сила
- •2.2. Основной закон динамики поступательного движения.
- •2.3. Третий закон Ньютона
- •2.4. Силы в механике
- •2.5. Закон сохранения импульса. Центр масс
- •Глава 3. Энергия, как универсальная мера различных форм движения и взаимодействия тел. Закон сохранения энергии
- •3.1. Энергия, работа, мощность
- •3.2. Кинетическая и потенциальная энергии
- •3.3. Закон сохранения энергии
- •Глава4. Динамика вращательного движения твердого тела
- •4.1. Модель абсолютно твердого тела
- •4.2. Момент силы
- •4.3. Пара сил
- •4.4. Простые машины
- •4.5. Момент инерции
- •4.6. Кинетическая энергия вращения
- •4.7. Уравнение динамики вращательного движения твердого тела
- •4.8. Момент импульса и закон его сохранения
- •Глава 5. Элементы теории относительности эйнштейна
- •5.1. Преобразования Галилея.
- •5.2. Постулаты специальной (частной) теории относительности
- •5.3. Преобразования Лоренца
- •5.4. Следствия из преобразований Лоренца
- •5.5. Основной закон релятивистской динамики материальной точки
- •5.6. Закон взаимосвязи массы и энергии
- •Глава 6. Элементы механики жидкостей и газов
- •6.1. Давление в жидкости и газе
- •6.2. Уравнение неразрывности
- •6.3. Уравнение Бернулли и следствия из него
- •6.4. Ламинарный и турбулентный режимы течения жидкостей
- •6.5. Движение тел в жидкостях и газах
- •Основы молекулярной физики и термодинамики
- •Глава 7.Основные положения молекулярно- кинетической теории
- •7.1. Введение
- •7.2. Законы идеального газа
- •2) Давление данной массы газа при постоянном объеме изменяется линейно с температурой:
- •7.3.Уравнение Клапейрона – Менделеева
- •7.4. Основное уравнение молекулярно-кинетической теории идеальных газов
- •Глава 8. Закон максвелла о распределении молекул идеального газа по скоростям и энергиям
- •8.1. Введение
- •8.2. Закон Максвелла о распределении молекул идеального газа
- •8.3. Барометрическая формула. Распределение Больцмана
- •8.4. Среднее· число столкновений и средняя длина свободного пробега молекул
- •Глава 9. Реальные газы
- •9.1. Силы и потенциальная энергия межмолекулярного взаимодействия
- •9.2. Уравнение Ван-дер-Ваальса
- •9.3. Изотермы Ван-дер-Ваальса и их анализ
- •9.4. Внутренняя энергия реального газа
- •Глава 10. Свойства реальных жидкостей
- •10.1. Поверхностное натяжение
- •10.2. Явление смачивания
- •10.3. Давление под искривленной поверхностью жидкости
- •10.4. Капиллярные явления
- •Глава 11. Основы термодинамики
- •11.1. Введение
- •11.2. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
- •В классической статистической физике выводится
- •11.3. Первое начало термодинамики
- •11.4. Работа газа при изменении его объема
- •11.5. Теплоемкость
- •11.6. Применение первого начала термодинамики к изопроцессам
- •Глава 12. Второе начало термодинамики
- •12.1. Круговой процесс (цикл). Обратимые и необратимые процессы
- •12.2. Энтропия, ее статистическое толкование
- •12.3.Второе начало термодинамики
- •12.4. Тепловые двигатели и холодильные машины.
- •Электричество и магнетизм
- •Глава 13. Основы электростатики
- •13.1. Атомистичность заряда. Закон сохранения заряда
- •13.2. Закон Кулона
- •13.3. Поток вектора напряженности
- •13.4. Теорема Гаусса
- •13.5. Поле бесконечной однородно заряженной плоскости
- •13.6. Поле двух разноименно заряженных плоскостей
- •13.7. Поле бесконечно заряженного цилиндра
- •13.8. Работа сил электростатического поля
- •13.9. Потенциал
- •13.10. Связь между напряженностью электрического поля
- •13.11. Эквипотенциальные поверхности
- •13.12. Применение электростатики в строительстве
- •13.12.1.Покрытия, основанные на электростатических принципах
- •13.12.2.Строительные технологические процессы, которые сопровождаются образованием электростатических полей
- •Глава14. Диэлектрики. Электроемкость
- •14.1. Полярные и неполярные молекулы
- •14.2. Диполь в однородном и неоднородном электрических полях
- •14.3. Поляризация диэлектриков
- •14.4. Поле внутри плоской пластины
- •14.5. Электроемкость
- •14.6. Конденсаторы
- •14.7. Энергия системы зарядов
- •14.8. Энергия заряженного конденсатора
- •14.9. Энергия электрического поля
- •Глава 15. Постоянный электрический ток
- •15.1. Сила и плотность тока
- •15.2. Сторонние силы. Эдс.
- •15.3. Закон Ома
- •15.4. Разветвленные цепи. Правила Кирхгофа
- •Глава 16. Магнитное поле токов
- •16.1.Закон Ампера
- •16.2. Магнитное поле. Закон Био – Савара - Лапласа
- •16.3. Работа перемещения контура с током в магнитном поле
- •16.4. Сила Лоренца
- •16.5. Влияние магнитных полей на живые организмы
- •Глава 17. Поток вектора магнитной индукции. Теорема гаусса
- •17.2. Токи при замыкании и размыкании цепи
- •Глава18. Магнитное поле в веществе
- •18.1. Магнитные моменты электронов и атомов
- •18.2. Магнитные свойства вещества. Ферромагнетизм
- •18.3. Диамагнетизм
- •18.4. Парамагнетизм
- •Глава 19. Механические колебания
- •19.1.Гармонические колебания и их характеристики
- •19.2. Дифференциальное уравнение свободных колебаний
- •18.3.Скорость и ускорение гармонических колебаний
- •19.4. Энергия колебаний Кинетическая энергия материальной точки, совершающей гармонические колебания равна
- •19.5.Сложение гармонических колебаний
- •19.6. Сложение взаимно-перпендикулярных колебаний
- •Глава 20. Затухающие и вынужденные колебания
- •20.1. Дифференциальное уравнение затухающих колебаний
- •20.2. Вынужденные колебания
- •20.3.Резонанс вынужденных колебаний
- •Глава 21. Электромагнитные колебания
- •21.1 Свободные электромагнитные колебания
- •21.2.Затухающие колебания в электрическом колебательном контуре
- •21.3.Вынужденные электромагнитные колебания
- •21.4.Переменный электрический ток
- •21.5.Резонанс токов и напряжение в цепи переменного тока
- •21.6. Мощность, выделяемая в цепи переменного тока
- •Глава 22. Упругие волны
- •22.1.Волновые процессы. Продольные и поперечные волны
- •22.2.Уравнение бегущей волны
- •22.3. Фазовая скорость бегущей волны
- •22.4.Принцип суперпозиции волн. Групповая скорость
- •22.5.Интерференция волн
- •22.6.Стоячие волны
- •Глава 23. Акустика
- •23.1. Основные характеристики звуковых волн
- •23.2. Эффект Доплера
- •23.3.Применение ультразвука
- •Глава 24. Электромагнитные волны
- •24.1.Экспериментальное получение электромагнитных волн
- •24.2.Дифференциальное уравнение электромагнитной волны
- •24.3. Энергия электромагнитных волн. Импульс электромагнитного поля
- •Глава 25. Взаимодействие света с веществом
- •25.1. Основные законы оптики. Полное отражение
- •25.2. Поглощение и рассеяние света
- •25.3. Тонкие линзы. Изображение предметов с помощью линз
- •25. 4. Оптические приборы, используемые в строительной технике
- •25.4.1. Теодолиты
- •25.4.2. Микроскоп
- •25.4.3. Элементы электронной оптики
- •Глава 26. Природа света и его свойства. Интерференция света
- •26.1. Развитие представлений о природе света
- •26.2. Интерференция света
- •26.4. Применение интерференции света.
- •Глава 27. Дифракция света
- •27.1. Принцип Гюйгенса — Френеля
- •27.2. Метод зон Френеля. Прямолинейное распространение света
- •27.3. Дифракция Френеля на круглом отверстии и диске
- •27.4. Дифракция Фраунгофера на одной щели
- •27.5. Дифракция Фраунгофера на дифракционной решетке
- •27.6. Понятие о голографии
- •Глава 28. Рентгеновский анализ
- •28.1. Рентгеновские лучи
- •28.2. Источники рентгеновских лучей
- •28.3. Основные методы рентгеноструктурного анализа
- •Глава 29. Дисперсия и поляризация света
- •29.1. Видимый свет
- •29.2. Дисперсия света
- •29.3. Естественный и поляризованный свет
- •Если свет падает на границу раздела под углом Брюстера, то отраженный и преломленный лучи взаимно перпендикулярны.
- •29.4. Вращение плоскости поляризации
- •29.5. Применение поляризационных микроскопов
- •Глава 30. Основные характеристики светотехники
- •30.1. Энергия излучения. Поток излучения.
- •30.2. Кривая относительной спектральной чувствительности глаза
- •30.3. Телесный угол. Сила излучения
- •30.4. Сила света
- •30.5. Световой поток. Связь между энергетическими и световыми величинами
- •30.6. Освещенность
- •30.7. Яркость
- •30.8. Светимость
- •30.9. Законы освещенности
- •30.10. Фотометры
- •Глава 31. Тепловое излучение
- •31.1. Характеристики теплового излучения
- •31.2. Закон Кирхгофа
- •31.3. Законы Стефана — Больцмана и смещения Вина
- •31.4. Формулы Рэлея-Джинса и Планка
- •31.5. Оптическая пирометрия
- •31.6. Тепловые источники света
- •31.7. Теплообмен излучением между поверхностями в помещении
- •Глава 32. Фотоэффект. Двойственная природа света
- •32.1. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- •32.2. Уравнение Эйнштейна для внешнего фотоэффекта
- •32.3. Масса и импульс фотона. Давление света
- •32.4. Эффект Комптона и его элементарная теория
- •32.5. Применение фотоэффекта
- •Глава 33. Основы квантовой механики
- •33.1. Корлускулярно-волновой дуализм свойств вещества
- •32.2. Соотношение неопределенностей Гейзенберга
- •33.3. Волновая функция и ее статистический смысл
- •33.4 Уравнение Шредингера
- •33.5. Частица в одномерной прямоугольной «потенциальной яме с бесконечно высокими «стенками»
- •33.6. Туннельный эффект
- •Глава 34. Теория атома водорода по бору. Квантовая теория атома водорода
- •34.1. Модель атома Резерфорда-Бора
- •34.2. Постулаты Бора
- •34.3. Спектр атома водорода по Бору
- •Полная энергия электрона в водородоподобной системе складывается из его кинетической энергии (mеυ2/2) и потенциальной энергии в электростатическом поле ядра (-Ze2/4πε0r):
- •34.4. Атом водорода в квантовой механике
- •Решение уравнения Шредингера, т.Е. Математическое описание орбитали, возможно лишь при определенных, дискретных значениях характеристик, получивших название квантовых чисел.
- •Формы орбиталей, соответствующие различным значениям l
- •34.5. Спин электрона
- •34.6. Спектры. Спектральный анализ
- •Глава 35. Элементы зонной теории твердых тел
- •35.1. Кристаллы. Связи между атомами и молекулами в твердых телах
- •35.2. Зоны энергетических уровней электронов в кристалле
- •35.3. Проводники, полупроводники и диэлектрики по зонной теории
- •35.4. Собственная проводимость полупроводников
- •35.5. Уровень Фéрми
- •35.6. Температурная зависимость электропроводности полупроводников
- •35.7. Примесная проводимость
- •35.8. Электронно-дырочный переход
- •35.9. Полупроводниковый диод
- •35.10. Транзистор
- •35.11. Микроэлектроника
- •35.12. Фоторезистор
- •35.13. Терморезистор
- •35.14. Фотодиод
- •35.15. Светодиод
- •35.16. Полупроводниковый лазер
- •35.17. Тензорезистивный эффект
- •35.18. Эффект Зеебека
- •35.19. Эффект Пельтье
- •35.20. Эффект Томсона
- •Глава 36. Строение и свойства атомного ядра
- •36.1. Размер, состав и заряд атомного ядра
- •36.2. Дефект массы и энергия связи ядра
- •36.3. Ядерные силы. Модели ядра
- •36.4. Радиоактивное излучение и его виды
- •36.5. Закон радиоактивного распада. Правила смещения
- •36.6. Законы сохранения при ядерных реакциях
- •36.7. Цепная реакция деления
- •36.8. Ядерная энергетика
- •36.9. Термоядерный синтез
- •36.10. Бытовые источники ионизирующего излучения
- •Литература
16.5. Влияние магнитных полей на живые организмы
В последнее время в народном хозяйстве заметно расширилась сфера применения магнитных полей или установок, создающих магнитные поля. При этом напряженность поля и площадь его рассеяния растут. Имеются сообщения, что существующие установки могут возбуждать в зазоре электромагнита поля напряженностью 8106-2108 А/м (напряженность естественного магнитного поля Земли приблизительно равна 40 А/м). При некоторых технологических процессах магнитное поле является основным фактором, например, при производстве постоянных магнитов, и оператор находится под влиянием достаточно сильного поля. Так, при производстве магнитов в области рук операторов напряженность поля достигает 8000-40000 А/м, в области туловища — 2000-50000 А/м.
Сильными источниками ЭМП могут служить токи промышленной частоты (= 50 Гц). Измерения напряженности ЭМП в районах прохождения электрических высоковольтных линий передачи показывают, что под линией она может достигать нескольких тысяч вольт на метр. Так как волны этого диапазона сильно поглощаются почвой, то уже на небольшом удалении от линии (50—100 м) напряженность падает до нескольких сот и даже нескольких десятков вольт на метр. Часто высоковольтные линии электропередачи проходят рядом с жилой застройкой и даже пересекают ее. Согласно данным ряда авторов, напряженности 300—1000 В/см могут оказывать неблагоприятное действие на организм, а 5000—10 000 В/см вызывают гибель животных. В связи с этим необходимо гигиеническое изучение и нормирование данного фактора.
Глава 17. Поток вектора магнитной индукции. Теорема гаусса
17.1 Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, равная
, (17.1)
где
— проекция вектора
на направление нормали к площадкеdS
(
— угол между векторами
и
),
— вектор, модуль которого равенdS,
а направление совпадает с направлением
нормали
к площадке. Поток вектора
может быть как положительным, так и
отрицательным в зависимости от знака
соs
(определяется выбором положительного
направления нормали
).
Обычно поток вектора
связывают с определенным контуром, по
которому течет ток. В таком случае
положительное направление нормали к
контуру нами уже определено: оно
связывается с током правилом правого
винта. Таким образом, магнитный поток,
создаваемый контуром через поверхность,
ограниченую им самим, всегда положителен.
Поток вектора
магнитной индукции через произвольную
поверхность
. (17.2)
Для однородного
поля и плоской поверхности, расположенной
перпендикулярно вектору
,
и
.
Из этой формулы определяется единица магнитного потока вебер (Вб): 1 Вб — магнитный поток, проходящий через плоскую поверхность площадью 1 м2, расположенную перпендикулярно однородному магнитному полю, индукция которого 1 Тл (1 Вб=1 Тлм2).
Теорема
Гаусса для поля
:
поток вектора магнитной индукции через
любую замкнутую поверхность равен нулю:
.
Эта теорема отражает факт отсутствия магнитных зарядов, вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми.
В качестве примера
рассчитаем поток вектора
через соленоид. Магнитная индукция
однородного поля внутри соленоида с
сердечником с магнитной проницаемостью,
равна
.
Магнитный поток через один виток соленоида площадью S равен
,
а полный магнитный поток, сцепленный со всеми витками соленоида и называемый потокосцеплением,
.
Обобщая результаты своих многочисленных опытов, Фарадей пришел к количественному закону электромагнитной индукции i. Он показал, что всякий раз, когда происходит изменение сцепленного с контуром потока магнитной индукции, в контуре возникает индукционный ток; возникновение индукционного тока указывает на наличие в цепи электродвижущей силы, называемой электродвижущей силой электромагнитной индукции. Значение индукционного тока, а следовательно, и э.д.с. электромагнитной индукции i, определяются только скоростью изменения магнитного потока, т.е.
i
. (17.3)
Теперь необходимо выяснить знак i. Знак магнитного потока зависит от выбора положительной нормали к контуру. В свою очередь, положительное направление нормали связано с током правилом правого винта. Следовательно, выбирая определенное положительное направление нормали, мы определяем как знак потока магнитной индукции, так и направление тока и э.д.с. в контуре. Пользуясь этими представлениями и выводами, можно соответственно прийти к формулировке закона электромагнитной индукции Фарадея: какова бы ни была причина изменения потока магнитной индукции, охватываемого замкнутым проводящим контуром, возникающая в контуре э.д.с.
i. (17.4)
Знак минус
показывает, что увеличение потока
называется э.д.с.i
0, т.е. поле индукционного тока направлено
навстречу потоку; уменьшение потока
вызываетi
0, т.е. направления потока и поля
индукционного тока совпадают. Знак
минус в формуле (17.4) является математическим
выражением правила Ленца — общего
правила для нахождения направления
индукционного тока.
Правило Ленца: индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного по тока, вызвавшего этот индукционный ток.
Закон Фарадея
может быть непосредственно получен из
закона сохранения энергии. Рассмотрим
проводник с током I,
который помещен в однородное магнитное
поле, перпендикулярное плоскости
контура, и может свободно перемещаться.
Под действием силы Ампера
,
направление которой показано на рисунке,
проводник перемещается на отрезок
.
Эта сила совершает работу
.
Произведение
,
а
,
таким образом, сила Ампера производит
работуdA =I
d,
где d
— пересеченный проводником магнитный
поток.
Если полное
сопротивление контура равно
,
то, согласно закону сохранения энергии,
работа источника тока за время
равная (Idt)
будет складываться из работы на джоулеву
теплоту
и работы по перемещению проводника в
магнитном поле
:
,
откуда ,
где
ℰi
есть
закон Фарадея.