
- •Курс общей физики,
- •Глава 1. Кинематика материальной точки
- •Глава 14. Диэлектрики. Электроемкость
- •Глава 30. Тепловое излучение
- •Глава 36. Строение и свойства атомного ядра
- •1.2. Скорость
- •1.3. Ускорение и его составляющие
- •1.4. Угловая скорость и угловое ускорение
- •Глава 2. Динамика материальной точки
- •2.1. Первый закон Ньютона. Масса. Сила
- •2.2. Основной закон динамики поступательного движения.
- •2.3. Третий закон Ньютона
- •2.4. Силы в механике
- •2.5. Закон сохранения импульса. Центр масс
- •Глава 3. Энергия, как универсальная мера различных форм движения и взаимодействия тел. Закон сохранения энергии
- •3.1. Энергия, работа, мощность
- •3.2. Кинетическая и потенциальная энергии
- •3.3. Закон сохранения энергии
- •Глава4. Динамика вращательного движения твердого тела
- •4.1. Модель абсолютно твердого тела
- •4.2. Момент силы
- •4.3. Пара сил
- •4.4. Простые машины
- •4.5. Момент инерции
- •4.6. Кинетическая энергия вращения
- •4.7. Уравнение динамики вращательного движения твердого тела
- •4.8. Момент импульса и закон его сохранения
- •Глава 5. Элементы теории относительности эйнштейна
- •5.1. Преобразования Галилея.
- •5.2. Постулаты специальной (частной) теории относительности
- •5.3. Преобразования Лоренца
- •5.4. Следствия из преобразований Лоренца
- •5.5. Основной закон релятивистской динамики материальной точки
- •5.6. Закон взаимосвязи массы и энергии
- •Глава 6. Элементы механики жидкостей и газов
- •6.1. Давление в жидкости и газе
- •6.2. Уравнение неразрывности
- •6.3. Уравнение Бернулли и следствия из него
- •6.4. Ламинарный и турбулентный режимы течения жидкостей
- •6.5. Движение тел в жидкостях и газах
- •Основы молекулярной физики и термодинамики
- •Глава 7.Основные положения молекулярно- кинетической теории
- •7.1. Введение
- •7.2. Законы идеального газа
- •2) Давление данной массы газа при постоянном объеме изменяется линейно с температурой:
- •7.3.Уравнение Клапейрона – Менделеева
- •7.4. Основное уравнение молекулярно-кинетической теории идеальных газов
- •Глава 8. Закон максвелла о распределении молекул идеального газа по скоростям и энергиям
- •8.1. Введение
- •8.2. Закон Максвелла о распределении молекул идеального газа
- •8.3. Барометрическая формула. Распределение Больцмана
- •8.4. Среднее· число столкновений и средняя длина свободного пробега молекул
- •Глава 9. Реальные газы
- •9.1. Силы и потенциальная энергия межмолекулярного взаимодействия
- •9.2. Уравнение Ван-дер-Ваальса
- •9.3. Изотермы Ван-дер-Ваальса и их анализ
- •9.4. Внутренняя энергия реального газа
- •Глава 10. Свойства реальных жидкостей
- •10.1. Поверхностное натяжение
- •10.2. Явление смачивания
- •10.3. Давление под искривленной поверхностью жидкости
- •10.4. Капиллярные явления
- •Глава 11. Основы термодинамики
- •11.1. Введение
- •11.2. Число степеней свободы молекулы. Закон равномерного распределения энергии по степеням свободы молекул
- •В классической статистической физике выводится
- •11.3. Первое начало термодинамики
- •11.4. Работа газа при изменении его объема
- •11.5. Теплоемкость
- •11.6. Применение первого начала термодинамики к изопроцессам
- •Глава 12. Второе начало термодинамики
- •12.1. Круговой процесс (цикл). Обратимые и необратимые процессы
- •12.2. Энтропия, ее статистическое толкование
- •12.3.Второе начало термодинамики
- •12.4. Тепловые двигатели и холодильные машины.
- •Электричество и магнетизм
- •Глава 13. Основы электростатики
- •13.1. Атомистичность заряда. Закон сохранения заряда
- •13.2. Закон Кулона
- •13.3. Поток вектора напряженности
- •13.4. Теорема Гаусса
- •13.5. Поле бесконечной однородно заряженной плоскости
- •13.6. Поле двух разноименно заряженных плоскостей
- •13.7. Поле бесконечно заряженного цилиндра
- •13.8. Работа сил электростатического поля
- •13.9. Потенциал
- •13.10. Связь между напряженностью электрического поля
- •13.11. Эквипотенциальные поверхности
- •13.12. Применение электростатики в строительстве
- •13.12.1.Покрытия, основанные на электростатических принципах
- •13.12.2.Строительные технологические процессы, которые сопровождаются образованием электростатических полей
- •Глава14. Диэлектрики. Электроемкость
- •14.1. Полярные и неполярные молекулы
- •14.2. Диполь в однородном и неоднородном электрических полях
- •14.3. Поляризация диэлектриков
- •14.4. Поле внутри плоской пластины
- •14.5. Электроемкость
- •14.6. Конденсаторы
- •14.7. Энергия системы зарядов
- •14.8. Энергия заряженного конденсатора
- •14.9. Энергия электрического поля
- •Глава 15. Постоянный электрический ток
- •15.1. Сила и плотность тока
- •15.2. Сторонние силы. Эдс.
- •15.3. Закон Ома
- •15.4. Разветвленные цепи. Правила Кирхгофа
- •Глава 16. Магнитное поле токов
- •16.1.Закон Ампера
- •16.2. Магнитное поле. Закон Био – Савара - Лапласа
- •16.3. Работа перемещения контура с током в магнитном поле
- •16.4. Сила Лоренца
- •16.5. Влияние магнитных полей на живые организмы
- •Глава 17. Поток вектора магнитной индукции. Теорема гаусса
- •17.2. Токи при замыкании и размыкании цепи
- •Глава18. Магнитное поле в веществе
- •18.1. Магнитные моменты электронов и атомов
- •18.2. Магнитные свойства вещества. Ферромагнетизм
- •18.3. Диамагнетизм
- •18.4. Парамагнетизм
- •Глава 19. Механические колебания
- •19.1.Гармонические колебания и их характеристики
- •19.2. Дифференциальное уравнение свободных колебаний
- •18.3.Скорость и ускорение гармонических колебаний
- •19.4. Энергия колебаний Кинетическая энергия материальной точки, совершающей гармонические колебания равна
- •19.5.Сложение гармонических колебаний
- •19.6. Сложение взаимно-перпендикулярных колебаний
- •Глава 20. Затухающие и вынужденные колебания
- •20.1. Дифференциальное уравнение затухающих колебаний
- •20.2. Вынужденные колебания
- •20.3.Резонанс вынужденных колебаний
- •Глава 21. Электромагнитные колебания
- •21.1 Свободные электромагнитные колебания
- •21.2.Затухающие колебания в электрическом колебательном контуре
- •21.3.Вынужденные электромагнитные колебания
- •21.4.Переменный электрический ток
- •21.5.Резонанс токов и напряжение в цепи переменного тока
- •21.6. Мощность, выделяемая в цепи переменного тока
- •Глава 22. Упругие волны
- •22.1.Волновые процессы. Продольные и поперечные волны
- •22.2.Уравнение бегущей волны
- •22.3. Фазовая скорость бегущей волны
- •22.4.Принцип суперпозиции волн. Групповая скорость
- •22.5.Интерференция волн
- •22.6.Стоячие волны
- •Глава 23. Акустика
- •23.1. Основные характеристики звуковых волн
- •23.2. Эффект Доплера
- •23.3.Применение ультразвука
- •Глава 24. Электромагнитные волны
- •24.1.Экспериментальное получение электромагнитных волн
- •24.2.Дифференциальное уравнение электромагнитной волны
- •24.3. Энергия электромагнитных волн. Импульс электромагнитного поля
- •Глава 25. Взаимодействие света с веществом
- •25.1. Основные законы оптики. Полное отражение
- •25.2. Поглощение и рассеяние света
- •25.3. Тонкие линзы. Изображение предметов с помощью линз
- •25. 4. Оптические приборы, используемые в строительной технике
- •25.4.1. Теодолиты
- •25.4.2. Микроскоп
- •25.4.3. Элементы электронной оптики
- •Глава 26. Природа света и его свойства. Интерференция света
- •26.1. Развитие представлений о природе света
- •26.2. Интерференция света
- •26.4. Применение интерференции света.
- •Глава 27. Дифракция света
- •27.1. Принцип Гюйгенса — Френеля
- •27.2. Метод зон Френеля. Прямолинейное распространение света
- •27.3. Дифракция Френеля на круглом отверстии и диске
- •27.4. Дифракция Фраунгофера на одной щели
- •27.5. Дифракция Фраунгофера на дифракционной решетке
- •27.6. Понятие о голографии
- •Глава 28. Рентгеновский анализ
- •28.1. Рентгеновские лучи
- •28.2. Источники рентгеновских лучей
- •28.3. Основные методы рентгеноструктурного анализа
- •Глава 29. Дисперсия и поляризация света
- •29.1. Видимый свет
- •29.2. Дисперсия света
- •29.3. Естественный и поляризованный свет
- •Если свет падает на границу раздела под углом Брюстера, то отраженный и преломленный лучи взаимно перпендикулярны.
- •29.4. Вращение плоскости поляризации
- •29.5. Применение поляризационных микроскопов
- •Глава 30. Основные характеристики светотехники
- •30.1. Энергия излучения. Поток излучения.
- •30.2. Кривая относительной спектральной чувствительности глаза
- •30.3. Телесный угол. Сила излучения
- •30.4. Сила света
- •30.5. Световой поток. Связь между энергетическими и световыми величинами
- •30.6. Освещенность
- •30.7. Яркость
- •30.8. Светимость
- •30.9. Законы освещенности
- •30.10. Фотометры
- •Глава 31. Тепловое излучение
- •31.1. Характеристики теплового излучения
- •31.2. Закон Кирхгофа
- •31.3. Законы Стефана — Больцмана и смещения Вина
- •31.4. Формулы Рэлея-Джинса и Планка
- •31.5. Оптическая пирометрия
- •31.6. Тепловые источники света
- •31.7. Теплообмен излучением между поверхностями в помещении
- •Глава 32. Фотоэффект. Двойственная природа света
- •32.1. Виды фотоэлектрического эффекта. Законы внешнего фотоэффекта
- •32.2. Уравнение Эйнштейна для внешнего фотоэффекта
- •32.3. Масса и импульс фотона. Давление света
- •32.4. Эффект Комптона и его элементарная теория
- •32.5. Применение фотоэффекта
- •Глава 33. Основы квантовой механики
- •33.1. Корлускулярно-волновой дуализм свойств вещества
- •32.2. Соотношение неопределенностей Гейзенберга
- •33.3. Волновая функция и ее статистический смысл
- •33.4 Уравнение Шредингера
- •33.5. Частица в одномерной прямоугольной «потенциальной яме с бесконечно высокими «стенками»
- •33.6. Туннельный эффект
- •Глава 34. Теория атома водорода по бору. Квантовая теория атома водорода
- •34.1. Модель атома Резерфорда-Бора
- •34.2. Постулаты Бора
- •34.3. Спектр атома водорода по Бору
- •Полная энергия электрона в водородоподобной системе складывается из его кинетической энергии (mеυ2/2) и потенциальной энергии в электростатическом поле ядра (-Ze2/4πε0r):
- •34.4. Атом водорода в квантовой механике
- •Решение уравнения Шредингера, т.Е. Математическое описание орбитали, возможно лишь при определенных, дискретных значениях характеристик, получивших название квантовых чисел.
- •Формы орбиталей, соответствующие различным значениям l
- •34.5. Спин электрона
- •34.6. Спектры. Спектральный анализ
- •Глава 35. Элементы зонной теории твердых тел
- •35.1. Кристаллы. Связи между атомами и молекулами в твердых телах
- •35.2. Зоны энергетических уровней электронов в кристалле
- •35.3. Проводники, полупроводники и диэлектрики по зонной теории
- •35.4. Собственная проводимость полупроводников
- •35.5. Уровень Фéрми
- •35.6. Температурная зависимость электропроводности полупроводников
- •35.7. Примесная проводимость
- •35.8. Электронно-дырочный переход
- •35.9. Полупроводниковый диод
- •35.10. Транзистор
- •35.11. Микроэлектроника
- •35.12. Фоторезистор
- •35.13. Терморезистор
- •35.14. Фотодиод
- •35.15. Светодиод
- •35.16. Полупроводниковый лазер
- •35.17. Тензорезистивный эффект
- •35.18. Эффект Зеебека
- •35.19. Эффект Пельтье
- •35.20. Эффект Томсона
- •Глава 36. Строение и свойства атомного ядра
- •36.1. Размер, состав и заряд атомного ядра
- •36.2. Дефект массы и энергия связи ядра
- •36.3. Ядерные силы. Модели ядра
- •36.4. Радиоактивное излучение и его виды
- •36.5. Закон радиоактивного распада. Правила смещения
- •36.6. Законы сохранения при ядерных реакциях
- •36.7. Цепная реакция деления
- •36.8. Ядерная энергетика
- •36.9. Термоядерный синтез
- •36.10. Бытовые источники ионизирующего излучения
- •Литература
6.2. Уравнение неразрывности
Движение
жидкостей называется течением,
а совокупность
частиц движущейся жидкости
- потоком.
Графически
движение
жидкостей изображается с помощью линий
тока,
которые
проводятся так, что касательные
к ним совпадают по направлению
с вектором скорости
жидкости в соответствующих
точках пространства (рис.6.1).
Линии тока проводятся так, чтобы
густота их, характеризуемая отношением
числа линий к площади перпендикулярной
им площадки, через которую они проходят,
была больше там, где больше скорость
течения жидкости, и меньше там, где
жидкость течет медленнее. Таким образом,
по картине линий тока можно судить
о направлении и модуле скорости в
разных точках пространства, т. е. можно
определить
состояние движения жидкости. Линии
тока в жидкости можно «проявить»,
например, подмешав в нее какие-либо
заметные взвешенные частицы.
Часть жидкости, ограниченную линия ми тока, называют трубкой тока. Течение жидкости называется установившимся (или стационарным), если форма и расположение линий тока, а также значения скоростей в каждой ее точке со временем не изменяются. Рассмотрим какую-либо трубку тока. Выберем два ее сечения S1 и S2, перпендикулярные направлению скорости (рис.6.2).
За время Δt
через сечение S
проходит объем
жидкости SυΔt;
следовательно, за 1с
через S1
пройдет объем жидкости S1υ1,
где
υ1
- скорость
течения жидкости в
месте сечения S1.
Через сечение S2
за 1
с пройдет объем жидкости S2υ2,
где
υ2
-
скорость течения жидкости в месте
сечения
S2.
Здесь предполагается, что скорость
жидкости в сечении постоянна. Если
жидкость несжимаема (ρ
= const),
то через
сечение S2
пройдет такой же объем жидкости,
как и через сечение S1,
т. е.
S1υ1 = S2υ2 = const . (6.2)
Следовательно, произведение скорости течения несжимаемой жидкости на поперечное сечение трубки тока есть величина постоянная для данной трубки тока. Соотношение (6.2) называется уравнением неразрывности для несжимаемой жидкости.
6.3. Уравнение Бернулли и следствия из него
Выделим в стационарно текущей идеальной жидкости (физическая абстракция, т. е. воображаемая жидкость, в которой отсутствуют силы внутреннего трения) трубку тока, ограниченную сечениями S1 и S2, по которой слева направо течет жидкость (рис.6.3). Пусть в месте сечения S1 скорость течения v1, давление р1 и высота, на которой это сечение расположено, h1. Аналогично, в месте сечения S2 скорость течения v2, давление p2 и высота сечения h2. За малый промежуток времени Δt жидкость перемещается от сечений S1 и S2 к сечениям S′1 и S′2.
Согласно закону сохранения энергии, изменение полной энергии W2 – W1 идеальной несжимаемой жидкости должно быть равно работе А внешних сил по перемещению массы т жидкости:
W2 – W1 = A, (6.3)
где W1 и W2 - полные энергии жидкости массой т в местах сечений S1 и S2 соответственно.
С другой стороны, А - это работа, совершаемая при перемещении всей жидкости, заключенной между сечениями S1 и S2, за рассматриваемый малый промежуток времени Δt. Для перенесения массы т от S1 до S'1 жидкость должна переместиться на расстояние l1 = υ1Δt и от S2 до S'2 - на расстояние l2 = υ2Δt. Отметим, что l1 и l2 настолько малы, что всем точкам объемов, закрашенных на рис.6.3, приписывают постоянные значения скорости υ, давления р и высоты h. Следовательно,
А = F1l1 + F2l2, (6.4)
где F1 = p1S1 и F2 = - p2S2 (отрицательна, так как направлена в сторону, противоположную течению жидкости; рис.6.3).
Полные энергии W1 и W2 будут складываться из кинетической и потенциальной энергий массы т жидкости:
W1 = mυ12/2 + mgh1, (6.5)
W2= mυ22/2 + mgh2. (6.6)
Подставляя (6.5) и (6.6) в (6.3) и приравнивая (6.3) и (6.4), получим
mυ12/2 + mgh1 + p1S1υ1Δt = mυ22/2 + mgh2 + p2S2υ2Δt . (6.7)
Согласно уравнению неразрывности для несжимаемой жидкости (6.2), объем, занимаемый жидкостью, остается постоянным, т. е.
ΔV = S1υ1Δt = S2υ2Δt.
Разделив выражение (6.5) на ΔV, получим
ρυ12/2 + ρgh1 + p1 = ρυ22/2 + ρgh2 + p2,
где ρ - плотность жидкости. Но так как сечения выбирались произвольно, то можем записать
ρυ2/2 + ρgh + p = const. (6.8)
Выражение (6.8) называется уравнением Бернулли. Как видно из его вывода, уравнение Бернулли - выражение закона сохранения энергии применительно к установившемуся течению идеальной жидкости. Оно хорошо выполняется и для реальных жидкостей, внутреннее трение которых не очень велико.
Величина р
в формуле (6.8) называется
статическим
давлением
(давление
жидкости
на поверхность обтекаемого ею тела),
величина ρυ2/2
-
динамическим
давлением.
Как
уже указывалось выше,
величина ρgh
представляет собой
гидростатическое
давление.
Для горизонтальной трубки тока (h1 = h2) выражение (6.8) принимает вид
ρυ2/2 + p = const, (6.9)
где p + ρυ2/2 называется полным давлением.
Из уравнения Бернулли (6.9) для горизонтальной трубки тока и уравнения неразрывности (6.2) следует, что при течении жидкости по горизонтальной трубе, имеющей различные сечения, скорость жидкости больше в местах сужения, а статическое давление больше в более широких местах, т. е. там, где скорость меньше. Это можно продемонстрировать, установив вдоль трубы ряд манометров (рис.6.4). В соответствии с уравнением Бернулли опыт показывает, что в манометрической трубке В, прикрепленной к узкой части трубы, уровень жидкости ниже, чем в манометрических трубках А и С, прикрепленных к широкой части трубы.
Так как
динамическое давление связано со
скоростью движения жидкости (газа),
то уравнение Бернулли позволяет измерять
скорость потока жидкости. Для этого
применяется трубка Пито - Прандтля
(рис.6.5). Прибор состоит из двух изогнутых
под прямым углом трубок, противоположные
концы которых присоединены
к манометру. С помощью одной из трубок
измеряется полное давление (р0),
с
помощью другой - статическое (р).
Манометром
измеряется разность давлений:
р0 – p = ρ0gh, (6.10)
гдеρ0
-
плотность жидкости в манометре. С
другой стороны, согласно уравнению
Бернулли, разность полного и статического
давлений равна динамическому давлению:
р0 – p = ρυ2/2 . (6.11)
Из формул (6.10) и (6.11) получаем искомую скорость потока жидкости:
υ
=.
(6.12)
Уменьшение статического давления в точках, где скорость потока больше, положено в основу работы водоструйного насоса (рис.6.6). Струя воды подается в трубку, открытую в атмосферу, так что давление на выходе из трубки равно атмосферному. В трубке имеется сужение, по которому вода течет с большей скоростью. В этом месте давление меньше атмосферного. Это давление устанавливается и в откачанном сосуде, который связан с трубкой через разрыв, имеющийся в ее узкой части. Воздух увлекается вытекающей с большой скоростью водой из узкого конца. Таким образом можно откачивать воздух из сосуда до давления 100 мм.рт.ст.
Уравнение Бернулли используется для нахождения скорости истечения жидкости через отверстие в стенке или дне сосуда. Рассмотрим цилиндрический сосуд с жидкостью, в боковой стенке которого на некоторой глубине ниже уровня жидкости имеется маленькое отверстие (рис.6.7).
Рассмотрим
два сечения (на уровне h1
свободной
поверхности жидкости в сосуде
на
уровнеh2
выхода
ее из отверстия). Напишем
для них уравнение Бернулли:
ρυ12/2 + ρgh1 + p1 = ρυ22/2 + ρgh2 + p2.
Так как давления р1 и р2 в жидкости на уровнях первого и второго сечений равны атмосферному, т. е. p1 = p2, то уравнение будет иметь вид υ12/2 + gh1 = υ22/2 + gh2.
Из уравнения неразрывности (6.2) следует, что υ2/υ1 =S1/S2, где S1 и S2 - площади поперечных сечений сосуда и отверстия. Если S1>> S2, то членом υ12/2 можно пренебречь и
υ22 = 2g(h1 – h2) = 2gh,
υ2
=
.
(6.13)
Это выражение получило название формулы Торричелли .