Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Fizika_lektsii.doc
Скачиваний:
404
Добавлен:
16.03.2016
Размер:
11.57 Mб
Скачать

33.3. Волновая функция и ее статистический смысл

Экспериментальное подтверждение идеи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микробъектам, диктуемая соотношением неопределенностей, а также противоречие целого ряда экспериментов с применяемыми в начале XX в. теориями привели к новому этапу развития квантовой теории — созданию квантовой механики, описывающей законы движения и взаимодействия микрочастиц с учетом их волновых свойств.

В квантовой механике состояние микрочастиц описывается с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах. Вероятность нахождения частицы в элементе объемом dV равна

dW= │Ψ│2 dV. (33.6)

Величина │Ψ│2 = dW/dV - имеет смысл плотности вероятности, т.е. определяет вероятность нахождения частицы в единичном объеме в окрестности точки с координатами х, у, z. Таким образом, физический смысл имеет не сама Ψ- функция, а квадрат ее модуля |Ψ|2, которым задается интенсивность волн де Бройля.

Вероятность найти частицу в момент времени t в конечном объеме V, равна

W= =Ψ2 dV. (33.7)

Так как Ψ2dV определяется как вероятность, то необходимо волновую функцию Ψ нормировать так, чтобы вероятность достоверного события обращалась в единицу, если за объем V принять бесконечный объем всего пространства. Это означает, что при данном условии частица должна находиться где-то в пространстве. Следовательно, условие нормировки вероятностей

│Ψ2 dV =1, (33.8)

где данный интеграл (8) вычисляется по всему бесконечному пространству, т. е. по координатам х, у, z от - ∞ до ∞. Функция Ψ должна быть конечной, однозначной, и непрерывной.

33.4 Уравнение Шредингера

Уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого вытекали бы волновые свойства частиц. Оно должно быть уравнением относительно волновой функции Ψ (х, у, z, t), так как величина Ψ2 определяет вероятность пребывания частицы в момент времени в объеме.

Основное уравнение сформулировано Э. Шредингером: уравнения не выводится, а постулируется.

Уравнение Шредингера имеет вид:

-ΔΨ + U(x,y, z, t = iħ, (33.9)

где ħ=h/(2π), т—масса частицы, Δ—оператор Лапласа, i — мнимая единица, U(x,y,z,t) — потенциальная функция частицы в силовом поле, в котором она движется, Ψ (x,y, z, t) — искомая волновая функция частицы.

Уравнение (32.9) является общим уравнением Шредингера. Его также называют уравнением Шредингера, зависящим от времени. Для многих физических явлений, происходящих в микромире, уравнение (33.9) можно упростить, исключив зависимость Ψ от времени, иными словами, найти уравнение Шредингера для стационарных состояний — состояний с фиксированными значениями энергии. Это возможно, если силовое поле, в котором частица движется, стационарно, т. е. функция U(x,y,z,t) не зависит явно от времени и имеет смысл потенциальной энергии.

∆Ψ + (E-U)Ψ = 0. (33.10)

Уравнение (33.10) называется уравнением Шредингера для стационарных состояний.

В это уравнение в качестве параметра входит полная энергия Е частицы. Решение уравнения имеет место не при любых значениях параметра Е, а лишь при определенном наборе, характерном для данной задачи. Эти значения энергии называются собственными. Собственные значения Е могут образовывать как непрерывный и дискретный ряд.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]