- •2. Производные моносахаридов, образующиеся в организме (фосфорные эфиры, уроновые кислоты, аминосахара), их биологическое значение.
- •3. Биосинтез хс. Схема процесса. Атеросклероз и связь нарушений метаболизма хс и липопротеинов.
- •4.Минеральные вещества крови (Са, р, Na, k, Fe). Участие в обмене.
- •1. Основные этапы биосинтеза белка. Роль нуклеиновых кислот, активация ак, рабочий цикл рибосомы.
- •2. Гетерополисахариды (классы гликозаминокликанов). Строение, распространение в организме. Биологическая роль.
- •3.Структура ферментов. Активный центр. Механизм обр-ия фермент-субстратного комплекса. Аллостерические участки, их биороль.
- •4. Состав молока и роль в питании растущего ор-ма. Сравнительная оценка состава коровьего и женского молока. Преимущества естественного вскармливания.
- •1. Свойства и биолоическая роль белков. Белки как гидрофильные коллоиды. Реакция осаждения белков, использование реакций осаждения в мед.Практике. Методы очистки и разделения белков.
- •2. Переваривание и всасывание у в жкт. Возрастные особенности. Судьба всосавшихся моносахаридов.
- •3. Понятие об энергии активации. Образование фs-комплекса. Принципы количественного определения активности ф. Единицы активности.
- •4.Содержание и формы билирубина в крови. Диагностическое значение форм билирубина.
- •1. Белки как амфотерные электролиты. Механизм образования заряда. Изоэлектрическая точка белка. Св-ва б в ит.
- •2. Биосинтез и мобилизация гликогена, последовательность реакций. Биол.Роль. Регуляция активности фосфорилазы и гликогенсинтетазы.
- •3.Основные сведения о кинетике ферментативных реакций. Факторы влияющие на скорость р-ий.
- •4. Содержание глюкозы в крови. Возрастные особенности.
- •1.Гидролиз белков. Методы, условия, продукты гидролиза. Определение степени гидролиза. Использование гидролизатов в медицине.
- •2. Анаэробный распад глюкозы. Последовательность р-ий, локализация. Биологическая роль.
- •3. Стероидные гормоны, представители. Механизм действия. Особенности биосинтеза стероидных гормонов.
- •4. Содержание белков в плазме крови, возрастные особенности.
- •2. Роль анаэробного и аэробного распада глюкозы в мышцах. Судьба молочной кислоты.
- •3. Кофакторы и их связь с витаминами. Типичные примеры.
- •4. Содержание остаточного азота в крови. Компоненты остаточного азота.
- •1. Белки. Классификация б. Характеристика сложных б. Хромопротеины, классификация, строение, распространение.
- •2. Аэробное окисление у, схема процесса. Образование пвк из глю, последовательность р-ий. Челночный механизм транспорта водорода.
- •3. Регуляция активности ф. Аллостерические механизмы, ограниченный протеолиз, хим.Модифиация ферментов. Биологическая роль регуляции активности ф.
- •4. Возврастные особенности состава крови (белки, остаточный азот, глюкоза).
- •1. Нуклеопротеины. Современные представления о структуре и функциях нуклеиновых кислот. Продукты их гидролиза.
- •2. Окислительное декарбоксилирование пвк. Последовательность реакций, связь с дыхательной цепью.
- •3. Активаторы и ингибиторы ферментов. Типы ингибирования. Применение ингибиторов в качестве лекарственных средств.
- •4. Минеральные вещества крови. Распределение между плазмой и эритроцитами.
- •1. Днк. Первичная, вторичная и третичная структуры. Биологическая роль днк.
- •2. Цикл трикарбоновых кислот, последовательность реакций, связь с дыхательной цепью. Биологическое значение.
- •3. Классификация ферментов. Важнейшие представители основных классов.
- •4. Содержание Са и р в плазме крови.
- •1. Рнк. Первичная и вторичная структура. Типы рнк, особенности строения, локализация в клетке. Биологическая роль.
- •2. Строение коэнзима а, участие в обмене веществ.
- •3. Энергетический обмен. Стадии катаболизма б, л, у. Источники восстановительных эквивалентов для электрон-транспортной цепи. Роль митохондрий в окислении водорода.
- •4. Изменение содержания белков, остаточного азота, глюкозы при заболеваниях.
- •1. Гликопротеины. Их строение, классификация, представители. Биологическая роль.
- •2. Пентозофосфатный путь окисления глюкозы, основные этапы процесса. Биологическое значение цикла. Наследственные нарушения.
- •3. Митохондриальная цепь окисления кислорода. Образование электрохимического трансмембранного потенциала, его использование.
- •4. Анализ желудочного сока.
- •1. Липопротеины. Их строение, классификация. Состав и функции липопротеинов крови.
- •2. Роль печени в обмене углеводов. Глюконеогенез, субстраты для синтеза, схема реакций.
- •3. Тканевое дыхание, последовательность реакций. Продукция энергии в дыхательной цепи.
- •4. Формы кислотности желудочного сока.
- •1. Хромопротеины, их строение, биологическая роль. Основные представители хромопротеинов.
- •2. Поддержание постоянства глюкозы в крови. Источники и пути расходования глюкозы в крови. Гипо- и гипергликемия, причины их возникновения.
- •3. Надн-оксидазная система: надн-зависимые дегидрогеназы, флавиновые дг, железосеоцентры. Строение, их роль в транспорте электронов.
- •4. Возрастные особенности желуд сока.
- •1. Заменимые и незаменимые ак. Потребность ор-ма в б в зависимости от возраста. Белковый минимум. Формы баланса азота в организме. Возрастные особенности.
- •2. Биосинтез глюкозы (глюконеогенез). Возможные предшественники, последовательность реакций. Глюкозолактатный цикл (цикл Кори). Физиологическое значение.
- •3. Цикл кислорода дыхательной цепи. Цитохромоксидаза, строение, биологическая роль.
- •4.Физико-химические показатели мочи. Возрастные особенности.
- •1. Переваривание белков в жкт. Промежуточные и конечные продукты гидролиза белков. Использование амк в тканях.
- •2. Сахарный диабет. Характер нарушений обменных процессов при сах.Диабете. Нарушение уранатного пути использования глюкозы как основа нарушений структуры гликозаминогликанов.
- •3. Образование макроэргических соединений в цепи тканевого дыхания. Характеристика процесса с помощью коэффициента р/о. Разобщение окисления и фосфорилирования в дых.Цепи.
- •4. РН мочи в норме и при патологии.
- •1. Процессы превращения аминокислот в толстом кишечнике под влиянием гнилостных бактерий. Обзвреживание проуктов гниения.
- •2. Наследственные нарушения обмена моносахаридов и дисахаридов: галактоземия, фруктоземия, непереносимость дисахаридов. Гликоген- и агликогенозы
- •3. Окислительное и субстратное фосфорилирование в процессе биологического окисления.
- •4. Пигменты мочи и их происхождение.
- •2. Современные данные об активных формах углеводов, жирных кислот и аминокислот.
- •3. Надн – оксидазная система: убихинон, цитохромы. Строение, их роль в транспорте электронов
- •4.Органические вещества мочи, их происхождение.
- •1. Роль нуклеиновых кислот в биосинтезе белка. Характеристика генетического кода. Строение и роль т-рнк.
- •2.Взаимосвязь белкового, углеводного и липидного обменов. Роль ключевых метаболитов глюкозо-6-фосфатов, пировинограной кислоты и ацетил-КоА.
- •3. Образование со2 в процессах биологического окисления. Типы декарбоксилирования в цтк.
- •4. Азотсодержащие вещества мочи. Возрастные особенности.
- •1.Основные этапы биосинтеза белков (активация амк, фазы трансляции, участие рибосом).
- •2. Липиды, классификация и распространение. Химическая природа, свойства и биол.Роль триацилглицеридов.
- •3. Микросомальное и митохондриальное окисление. Сходства и различия. Пути использования кислорода. Токсичность кислорода. Механизмы защиты.
- •4. Содержание мочевой кислоты в крови. Причины гиперурикемии.
- •1.Современные представления о регуляции биосинтеза белка. Регуляция действия генов. Строение и функционирование лактозного оперона. Индукция и репрессия синтеза белков в организме человека.
- •2.Классификация глицеролипидов, хим строение и биологическая роль в организме
- •3. Витамины и их значение в жизнедеятельности человека. Классификация. Участие в обмене веществ.
- •4. Индикан мочи,значение исследования.
- •3. Парные соединения мочи.
- •2 Переваривание и всасывание простых и сложных липидов в жкт. Возрастные особенности.
- •1.Процессы образования конечных продуктов обмена простых белков. Основные источники аммиака. Роль глутамина в оезвреживании аммиака и синтезе ряда соединений(как донор амидной группы).
- •2.Депонирование и мобилизация жиров в жировой ткани, физиологическое значение. Транспорт и использование жрных кислот, образующихся при мобилизации жиров. Биосинтез и использование кетоновых тел.
- •3.Витамин рр. Химическая природа. Растпространение, участие в обменных процессах.
- •4.Способы определения белка в моче.
- •1. Распад пуриновых и пиримидиновых азотистых оснований. Конечные продукты. Пути выведения.
- •2. Желчные кислоты, строение. Свойства. Участие в переваривании и всасывании липидов. Конъюгация желчных кислот, биологическая роль.
- •3. Функции почек. Транспорт веществ в процессе секреции и реабсорбции. Реабсорбция глюкозы, аминокислот, профильтровавшихся белков. Пороговые и беспороговые вещества.
- •4. Фенилкетонурия, алкаптонурия. Причины их возникновения.
- •3. Гомополисахариды (крахмал и гликоген). Химическое строение, свойства. Особенности распада в желудочно-кишечном тракте и тканях.
- •4. Нервная ткань. Химический состав, особенности обмена. Возрастные особенности.
- •1. Хромопротеины, их строение, биологическая роль. Основные представители хромопротеинов.
- •2. Аэробное окисление углеводов, схема процесса. Образование пировиноградной кислоты из глюкозы, последовательность реакций. Челночные механизмы транспорта водорода.
- •3. Гормоны половых желез. Химическое строение и участие в обменных процессах.
- •4. Индикан мочи, происхождение, диагностическая роль.
3. Гомополисахариды (крахмал и гликоген). Химическое строение, свойства. Особенности распада в желудочно-кишечном тракте и тканях.
Гомополисахариды. К ним относятся крахмал и гликоген. Общая формула [С6Н10О5]n. Гликоген – главный резервный полисахарид, построенный из остатков альфа-D-глюкозы, запасается в тканях печени и мышцах. Представляет собой амилозную цепь, в которых остатки глюкозы связаны альфа-1,4-гликозидной связью. Цепь амилопектина имеет ветвления. В точках ветвления имеются альфа-1,6-гликозидные связи. Чем больше точек ветвления тем лучше растворяется гликоген. В ЖКТ гликоген под действием амилолитических ферментов, а в тканях фосфорилазы распадается на декстрины. Они под действием альфа-амилазы в 12-перстной кишке распадаются на олигосахариды, в толстом кишечнике под действием специфических олигосахаридаз расщепляются до мальтодекстринов, лактоза под действием бета-галактозидазы распадается на глюкозу и галактозу. Лактоза (бета-галактозидаза) глюкоза + галактоза, сахароза (сахараза) глюкоза + фруктоза, мальтоза (мальтаза) 2 глюкозы.
4. Нервная ткань. Химический состав, особенности обмена. Возрастные особенности.
Функции нервной системы: обработка, хранение, передача информации через синаптические связи клеток. Главный элемент нервной ткани – нейрон. Синапс – осуществляет связь между отдельными нейронами. Химический состав: 1) содержание липидов в сером веществе 25%, в белом 40%, в периферических нервах до 50%. Липидный состав меняется в онтогенезе, в раннем возрасте отсутствуют цереброзиды, далее увеличивается количество длинноцепочных жирных кислот с четырьмя и пятью двойными связями. 2) содержание белков 50% в сером веществе, 35% в белом. 3) малый запас гликогена и АТФ.
Нейроспецифические белки (НСБ) – обнаруживаются в нервной ткани и количественно в ней преобладающие. Открыто более 200 НСБ. В нервной ткани присутствуют простые и сложные белки. Простые – нейроальбумины, глобулины и опорные белки – нейросклеропротеиды, нейроколлаген и нейроэластин. Сложные – нуклеопротеиды, липопротеины, фосфопротеины, протеолипиды, и надмолекулярные липонуклеопротеиды, липогликопротеиды, липогликонуклеопротеиды. НСБ: 1) Са связывающий НСБ – белок S100 – 1965 г – находится в мозге в глии – кислый гликопротеид, т.к. 60% его состава глутаминовая и аспарагиновая кислоты, он не осаждается в 100% (NH4)SO4. Появляется на 10-15 неделе эмбрионального развития, количество увеличивается по мере обучения, тренировок формирования условных рефлексов, в памяти. Молекула S100 соединяет 2Са меняет конформацию, на поверхности появляются гидрофобные группы – изменение проницаемости мембран. В 50 – основной фосфорилируемый белок мембраны синапсов, это приводит к продолжительному изменению заряда постсинаптической мембраны. При старении интенсивность ф-я падает, это приводит к снижению пластичности мембран. 2) НСБ связанные с адгезией и межклеточным узнаванием - гликопротеины, участвующие в синаптической передаче, рецепторной реакции, формирование и хранение памяти. Болезнь Альцгеймера – белок бета-АРР. Потеря интеллектуальной способности, теряется координация, кратковременная память, не узнавание себя. В норме белок бета-АРР погружен на половину в мембрану, верхняя половина отщепляется. А при болезни отщепляется только кончик, иногда остальное. 3) НСБ ферменты: белок 14-3-2-гамма гамма-енолаза, находится в цитоплазме нейронов, в основном в сером веществе больших полушарий. 4) Секретируемые НСБ – транспортер и защита от разрушения пептидных регуляторов, вырабатываемых в ЦНС: нейрофизин – используется для транспорта окситоцина и вазопрессина в соотношении 1:10 (окситоцин) и 1:14 (вазопрессин). 5) белок Р-400 (по молекулярной массе) – отвечает за двигательный контроль, находится в мозжечке. 6) белок – фактор роста нервов (ФРН) – NGF – вырабатывается клетками-мишенями, на аксоне есть его рецепторы. Если аксон в течение 12-15 дней достиг мишени – они выжили, другие погибают. Путем эндоцитоза NGF поглощается клеткой, в клетке может произойти частичная гидротация (дегродация) NGF, т.о. он выполняет трофическую функцию. NGF индуцирует тироксиноксидазу – основной фермент синтеза катехоламинов. Стимулирует поглощение уридина, образование полисом, синтез белка, липидов, РНК, потребление глюкозы. Он способствует выживанию нервных клеток – активирует рост аксонов и денритов, осуществляет контроль за сборкой микротрубочек. Белок РсI (пиайси) – его наличие связывают с шизофренией.
Азотистый обмен. Метаболизм белков и а/к в головном мозге происходит интенсивнее, чем в других органах, в сером веществе выше чем в белом. Более интенсивнее идет синтез из глюкозы глутаминовой и аспарагиновой кислот, глицина, серина, аланина. Быстрый обмен между свободными а/к мозга и кровью. На долю глутаминовой и аспарагиновой кислот и их производных (глутамин, ГАМК, глутатион) приходится 75% от всех а/к мозга. Центральная роль принадлежит глутаминовой кислоте, она может использоваться как источник энергии - глутаматальфа-КГЦТК (АТФ, Н2О, СО2). Концентрация глутамата поддерживается на одном уровне. Источники глутамата – 1) восстановительное анимирование альфакетоглутарат + аммиак + НАД(Ф)Н2 под действием глутаматдегидрогеназы образуется глутамат + НАД(Ф) + вода 2) трансанимирование аспартат + альфаКГ под действием АсАТ об-ся ЩУК + глутамат 3) метаболизм ГАМК – образуется из глутаминовой кислоты в реакции декарбоксилирования и СО2 Т.К. ГАМК оказывает тормозящий эффект на синаптическую передачу в ЦНС , то судорожные явления при недостатке витамина В6 могут быть связаны с пониженным образованием ГАМК. Внутривенное введение ГАМК может привести к гибели определенных клеток. Образование аммиака – источниками являются а/к и ихпроизводные.А/к+альфа-КГальфа-кетокислоты+глутамат. Глутамат+ЩУКа-КГ+аспартат. В митохондриях – дезаминирование НАД. А/к глутамат аспартат + ДНАД (НАДсукцинатсинтетаза, ГТФ) НАДсукцинат ( ф лиаза) фумраровая кислота + НАД (дезаминаза) NH3 + H2O + фор. В цитоплазме источник аммиака – АМФ. а/к глутамат аспартат + ИМФ (аденозилсукцинатсинтетаза) аденозилсукцинат (лиаза) фумарат + АМФ (дезаминаза) H2O + NH3 + ИМФ. Высокая концентрация аммиака приводит к коматозам. Обезвреживание аммиака: NH3 + глутамат (инсинтетаза) глутамин с током крови в печень или почки. Удаление аммиака происходит за счет глутамина.
Липиды – нейтральных липидов почти нет, преобладают сложные липиды – фосфолипиды, сфинголипиды – галактоцеребразиды, галактосульфатиды, много холестерина – 25% от всех липидов мозга. Сфинголипиды входят в состав миелиновых оболочек. Нарушение их деградации из-за дефекта фермента приводит к сфинголипидозам и демиелинизации. Ганглиозиды – участвуют в связывании натрия, калия, кальция, процессе адгезии, обеспечивает иммунохимическую специфичность. Свободных жирных кислот мало, в состав входят около 40 жк. Мозг не использует жк и липиды в качестве источника энергии, но может использовать бета-гидроксибутират. Энергетический обмен головного мозга: глюкоза – основной энергетический субстрат. В головном мозге потребляется до 70% глюкозы образующейся в печени и 20-25% от всего поступающего в кровь кислорода. Глюкоза: 90% окисляется аэробно до ПВК СО2, Н2О, АТФ (для поддержания электрических потенциалов), 5% анаэробно до молочной кислоты, а 5-7% идет на синтез гликопротеидов, в ПФЦ – образуется НАД(Ф)Н2, на синтез гликогена. Запаса гликогена хватило бы на 2-6 сек работы мозга, т.к. глюконеогенеза в мозге из а/к не происходит – нет соответствующих ферментов. Функционирование головного мозга зависит от поступающего уровня глюкозы с кровью.
Нуклеиновые кислоты – репликация ДНК в нейронах отсутствует, работает система репарации ДНК, в мозге экспрессируется несколько десятков тысяч уникальных генов, из которых не менее половины экспрессируется только в головном мозге – это говорит о высокой скорости транскрипции РНК, широко распространен альтернативный сплайсинг и интенсивное образование белка. Синтеза пиримидиновых нуклеотидов не происходит, т.к. нет карбамоилфосфатсинтетазы, для синтеза пуринов все есть. Содержание циклических нуклеотидов очень высокое, т.к. они участвуют в синаптической передаче нервного импульса. Особенности обмена в нервной ткани: 1) много липидов, мало углеводов, нет их резерва 2) высокий обмен дикарбоновых кислот 3) глюкоза – основной источник энергии 4) мало гликогена, поэтому мозг зависит от поступления глюкозы с кровью 5) интенсивный дыхательный обмен 6) кислород используется постоянно и уровень не меняется 7) обменные процессы носят обособленный характер благодаря гематоэнцефалическому барьеру, высокая чувствительность к гипоксии и гипогликемии. Медиаторы: 1) возбуждения – ацетилхолин, адреналин, норадреналин (все они их тирозина), серотонин (из триптофана). 2) тормозные – ГАМК, глицин, ацетилхолин из АцКоА и холина. Основные возбуждающие медиаторы в мозге – глутамат и аспартат. При освобождении в синапс они через ионотропные рецепторы открывают Na-каналы, происходит быстрый вход Na в постсинаптическую мембрану. Происходит деполяризация мембраны, что приводит к возбуждению нейрона. Серотонин – играет роль в развитии патологических состояний – эффективное расстройство и шизофрения. При его недостатке наблюдаются нарушение сна, раздражение, агрессия. Адаптация к стрессу включает систему ГАМК, увеличивается содержание ГАМК и он связывается с фосфолипидными компонентами постсинаптических мембран и ингибируют выработка АХ. ГАМК и глицин открывают каналы пропускающие Cl возникают тормозные постсинаптические потенциалы.
Медиаторы высших отделов нс: 1)Дофамин – осуществляет контроль движений. Болезнь Паркенсона – нарушение дофаминэргической передачи и концентрация дофамина падает и составляет 5-15% от нормы, вырабатывается в таламусе. При шизофрении концентрация увеличивается. Нейромедиаторы – нейропептиды, их несколько сотен, содержат от 2 до 50 а/к остатков и каждая имеет определенный комплекс биологической активности. Тиролиберин – активность эмоционального поведения, бодрствование, дых центра. Холицистокинин – мощный ингибитор пищедобывательного центра. Эндозепин 6 – вызывает беспокойство. Люлибирин – отвечает за половое поведение. Коннекторы – поведенческие пептиды – скотофобин. Аплоидные пептиды – обладает повышенной чувстваительностью к морфиновым рецепторам – эндоферины и бета-энкефалины. Они обладают значительным эффектом.
БИЛЕТ № 36