Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Вопросы по БИОХИМИИ

.doc
Скачиваний:
91
Добавлен:
13.03.2016
Размер:
422.91 Кб
Скачать

.№10 Каталаза и пероксидаза. Строение,локализация,биологическая функция.  Каталаза и пероксидаза не имеют прямого отношения к окислительно-восстановительным реакциям, способствуют распаду перекиси водорода, образованной при окислении. По строению эти ферменты двухкомпонентны. Коферментом является гем, идентичный гему гемоглобина, но железо имеет степень окисления 3+.Пероксидаза содержит один гем. Пероксидазы распространены, в основном, в растительном мире, но встречаются и в животных организмах, например, миелопероксидаза в лейкоцитах, лактатпероксидаза в молоке и т.д. Слабым пероксидазным свойством обладает Hb, на этом основана качественная реакция на него (бензидиновая проба). Пероксидазы ускоряет распад перекиси водорода до воды и атомарного кислорода, который является сильным окислителем. Эти ферменты участвуют в окислении ароматических соединений. Каталаза содержит 4 гема. Разлагает перекись водорода до воды и молекулярного кислорода. Присутствие каталазы обеспечивает защиту клеточных структур от действия перекиси водорода, образованной при пероксидазном типе окисления.Ткани наиболее богатые каталазой-печень, эритроциты, почки. Пероксидазой-легкие и костный мозг.Р-ии:каталазпа-2Н2О2=2Н2О+О2,пероксидаза-Н2О2+Н2SО2=2Н2О+SО2

.№11 Цитохромы, особенности структуры, биологическая роль.  Цитохромы — двухкомпонентные ферменты, относящиеся к гемсодержащим ХП, т.е. кофермент всех Цх представлен гемом. Основная биологическая функция цх – перенос электронов по цепи БО к молекулярному кислороду. Открыто около 20 цх, которые отличаются спектрами поглощения, по химической природе гема и сродству к молекулярному кислороду. Цх делятся на 4 группы в зависимости от природы входящего в них гема. Ферменты одной группы содержат одинаковые коферменты, но разные апоферменты. 5-ая и 6-ая координационные связи железа соединены с остатками гистидина и метионина (в ЦхС обе винильные группы также связаны с остатками цистеина). Железо, входящее в гемы цх может иметь степень окисления 2+ и 3+, В зависимости от способности поглащать свет в определенной части спектра цитохромы делят на группы a b c ,внутри каждой группы с уникальными спектровыми свойствами обазначают цифровыми индексами(b1 b2). В ЦПЭ участвуют а а3 b с с1. Цхb имеет гем, идентичный гему Нb и Mgb. роль цхb заключается в том, что он получает электроны от восстановленной формы КоQ, при этом КоQ окисляется, а цхb восстанавливается. . ЦхС (с1 и с) имеют одинаковые гемы, разные апоферменты. цхс1 передает электроны цхс, который восстанавливается, а цхс1 окисляется. . Цха и цха3 – имеют одинаковые коферменты, но разные апоферменты. . Цха и а3 связаны в один комплекс – цитохромоксидазу. Это крупная молекула с большим молекулярным весом, состоит из 2 молекул цха, 4-х молекул цха3 и 6 атомов меди. Медь в ЦХО переменной валентности и может служить источником электронов. Восстановленный цхс передает электроны цха, при этом окисляясь, цха восстанавливается, а цха3 окисляет ферроформу цха и передает электроны молекулярному кислороду.

12 Поступление, переваривание и всасывание хромопротеидов. Поступая в желудок, хромопротеиды распадаются на белок и простетическую группу. При этом белок подвергается первичному распаду на полипептиды и аминокислоты. Затем в тонком кишечнике происходит дальнейший распад полипептидов и аминокислоты начинают всасываться в кровь через ворсинки. Превращения простетических групп происходят в соответствии с их химической природой. Гем хромопротеидов окисляется в гематин, который почти не всасывается в кровь, а выделяется с калом.

13 Метаболизм ионов железа в организме, Всасывание, транспорт, депонирование, биологическая роль, железодефицитные состояния. Гемохроматоз.

Гемоглобин имеет примерно 68% железа всего организма, ферритин - 27%, миоглобин - 4%, трансферрин - 0,1%. Источниками железа при биосинтезе железосодержащих белков служат железо пищи и железо, освобождающееся при постоянном распаде эритроцитов в клетках печени и селезёнки. В пище железо в основном находится в окисленном состоянии (Fe3+) и входит в состав белков или солей органических кислот. Освобождению железа из солей органических кислот способствует кислая среда желудочного сока. Аскорбиновая кислота, содержащаяся в пище, восстанавливает железо и улучшает его всасывание, так как в клетки слизистой оболочки кишечника поступает только Fe2+. В суточном количестве пищи обычно содержится 15 - 20 мг железа, а всасывается только около 10% этого количества. Количество железа, которое всасывается в клетки слизистой оболочки кишечника, как правило, превышает потребности организма. Поступление железа из энтероцитов в кровь зависит от скорости синтеза в них белка апоферритина. Апоферритин "улавливает" железо в энтероцитах и превращается в ферритин, который остаётся в энтероцитах. Таким способом снижается поступление железа в капилляры крови из клеток кишечника. Когда потребность в железе невелика, скорость синтеза апоферритина повышается. При недостатке железа в организме апоферритин в энтероцитах почти не синтезируется. В плазме крови железо транспортирует белок трансферрин. Трансферрин - гликопротеин, который синтезируется в печени и связывает только окисленное железо (Fe3+). Поступающее в кровь железо окисляет фермент ферроксидаза. Трансферрин взаимодействует со специфическими мембранными рецепторами клеток. В результате этого взаимодействия в цитозоле клетки образуется комплекс Са2+-кальмодулин-ПКС, который фосфорилирует рецептор трансферрина и вызывает образование эндосомы. АТФ-зависимый протонный насос, находящийся в мембране эндосомы, создаёт кислую среду внутри эндосомы. В кислой среде эндосомы железо освобождается из трансферрина. После этого комплекс рецептор - апотрансферрин возвращается на поверхность плазматической мембраны клетки. При нейтральном значении рН внеклеточной жидкости апотрансферрин изменяет свою конформацию, отделяется от рецептора, выходит в плазму крови и становится способным вновь связывать ионы железа и включаться в новый цикл его транспорта в клетку. Железо в клетке используется для синтеза железосодержащих белков или депонируется в белке ферригине. Ферритин содержится почти во всех тканях, но в наибольшем количестве в печени, селезёнке и костном мозге. Незначительная часть ферритина экскретируется из тканей в плазму крови. Поскольку поступление ферэитина в кровь пропорционально его содержанию в тканях, то концентрация ферритина в крови - важный диагностический показатель запасов железа в организме при железодефидитной анемии. Железодефицитная анемия может наблюдаться при повторяющихся кровотечениях, беременности, частых родах, язвах и опухолях ЖКТ, При железодефицитной анемии уменьшается размер эритроцитов и их пигментация. В эритроцитах уменьшается содержание гемоглобина, понижается насыщение железом трансферрина, а в тканях и плазме крови снижается концентрация ферритина. Причина этих изменений - недостаток железа в организме, вследствие чего снижается синтез гема и ферритина в неэритроидных тканях и гемоглобина в эритроидных клетках. Гемохроматоз. Когда количество железа в клетках превышает объём ферритинового депо, железо откладывается в белковой части молекулы ферритина. В результате образования таких аморфных отложений избыточного железа ферритии превращается в гемосидерин. Гемосидерин плохо растворим в воде и содержит до 37% железа Накопление гранул гемосидерина в печени, поджелудочной железе, селезёнке и печени приводит к повреждению этих органов - гемохроматозу. Отложение гемосидерина в гепатоцитах вызывает цирроз печени, а в миокардиоцитах - сердечную недостаточность. Больных наследственным гемохроматозом лечат регулярными кровопусканиями, еженедельно или один раз в месяц в зависимости от тяжести состояния больного. К гемохроматозу могут привести частые переливания крови, в этих случаях больных лечат препаратами, связывающими железо.

14 Синтез порфиринов. Регуляция активности АЛК-синтазы в синтезе гема. Понятие о порфириях.

Гем синтезируется во всех тканях, но с наибольшей скоростью в костном мозге и печени. Первая реакция синтеза гема - образование 5-аминолевулиновой кислоты из глицина и сукцинил-КоА

Затем АЛК подвергается дегидрогенизации

Далее(ферм.УПГ -3-синтетаза)уропорфиноген3(ферментУПГдекарбоксилаза)копрофириноген3(КПГдекарбоксилазапротопорфирин9(Feхелатирующий фермент)гем

Регуляторную реакцию синтеза гема катализирует пиридоксальзависимый фермент аминолевулинатсинтаза. Скорость реакции регулируется аллостерически и на уровне трансляции фермента.

Аллостерическим ингибитором и корепрессором синтеза аминолевулинатсинтазы является гем ,В ретикулоцитах синтез этого фермента на этапе трансляции регулирует железо. На участке инициации мРНК, кодирующей фермент, имеется последовательность нуклеотидов, образующая шпилечную петлю, которая называется железочувствительным элементом  При высоких концентрациях железа в клетках оно образует комплекс с остатками цистеина регуляторного железосвязывающего белка. Взаимодействие железа с регуляторным железосвязывающим белком вызывает снижение сродства этого белка к IRE-элементу мРНК, кодирующей аминолевулинатсинтазу, и продолжение трансляции (рис. 13-6, А). При низких концентрациях железа железосвязывающий белок присоединяется к железо-чувствительному элементу, находящемуся на 5'-нетранслируемом конце мРНК, и трансляция аминолевулинатсинтазы тормозится.

Наследственные и приобретённые нарушения синтеза гема, сопровождающиеся повышением содержания порфириногенов, а также продуктов их окисления в тканях и крови и появлением их в моче, называют порфириями . Наследственные порфирии обусловлены генетическими дефектами ферментов, участвующих в синтезе гема. При этих заболеваниях отмечают снижение образования гема. Поскольку гем - аллостерический ингибитор аминолевулинатсинтазы, то активность этого фермента повышается, и это приводит к накоплению промежуточных продуктов синтеза гема - аминолевулиновой кислоты и порфириногенов.

В зависимости от основной локализации патологического процесса различают печёночные и эритропоэтические наследственные порфирии. Эритропоэтические порфирии сопровождаются накоплением порфиринов в нормобластах и эритроцитах, а печёночные - в гепатоцитах.

15, Тканевый распад железосодержащих хромопротеидов. Катаболизм гема.

16.Образование желчных пигментов, пигментов кала и мочи в норме. Диагностическое значение определения билирубина в крови и моче.

Распад хромопротеинов начинается с распада на гемм и белковую часть.Первая реакция катаболизма гема происходит при участии NADPH-зависимого ферментативного комплекса гемоксигеназы. Фермент катализирует расщепление связи между двумя пиррольными кольцами, содержащих винильные остатки, - таким образом, раскрывается структура кольца (рис. 13-11). В ходе реакции образуются линейный тетрапир-рол - биливердин(пигмент жёлтого цвета). Ионы железа, освободившиеся при распаде гема, могут быть использованы для синтеза новых молекул гемоглобина или для синтеза других железосодержащих белков. Биливердин восстанавливается до билирубина NADPH-зависимым ферментом биливердинредуктазой. Билирубин, образованный в клетках РЭС (селезёнки и костного мозга), плохо растворим в воде, по крови транспортируется в комплексе с белком плазмы крови альбумином. Эту форму билирубина называют неконъюгированным билирубином.Комплекс "альбумин-билирубин", доставляемый с током крови в печеНb, на поверхности плазматической мембраны гепатоцита диссоциирует.

В гладком ЭР гепатоцитов к билирубину присоединяются (реакция конъюгации) полярные группы, главным образом от глюкуроновой кислоты.Образуя растворимый в воде конъюгат - диглюкуронид билирубина (конъюгированный, или прямой, билирубин) Секреция конъюгированного билирубина в жёлчь идёт по механизму активного транспорта, т.е. против градиента концентрации. В кишечнике поступившие билирубинглюкурониды гидролизуются специфическими бактериальными ферментами β-глюкуронидазами, которые гидролизуют связь между билирубином и остатком глюкуроновой кислоты. билирубин под действием кишечной микрофлоры восстанавливается с образованием группы бесцветных тет-рапиррольных соединений - уробилиногеновВ подвздошной и толстой кишках небольшая часть уробилиногенов снова всасывается, попадает с кровью воротной вены в печеНb. Основная часть уробилиногена из печени в составе жёлчи выводится в кишечник и выделяется с фекалиями из организма, часть уробилиногениз печени поступает в кровь и удаляется с мочой в форме уробилина аВ норме большая часть бесцветных уробилиногенов, образующихся в толстой кишке, под действием кишечной микрофлоры окисляется в прямой кишке до пигмента коричневого цвета уробилина и удаляется с фекалиями. Цвет фекалий обусловлен присутствием уробилина.

В нормальном состоянии концентрация общего билирубина в плазме составляет 0,3-1 мг/дл (1,7-17 мкмоль/л), 75% от общего количества билирубина находится в неконъюгированной форме (непрямой билирубин). Когда содержание билирубина превышает норму, говорят о гипербилирубинемии. В зависимости от того, концентрация какого типа билирубина повышена в плазме - неконъюгированного или конъюгированного, - гипербилирубинемию классифицируют как неконъюгированную и конъюгированную.

17 Роль глюкуроновой кислоты в метаболизме билирубина

Ну если в трех словах:В гепатоцитах к билирубину присоединяется 2 молекулы глюкуроновой кислоты,образуя хорошо растворимый комплекс.В этом соединении билирубин утрачивает токсичность.Попадая в кровь он уже не сорбируется на белках и освобождается с мочой

18 Патология пигментного обмена. Виды желтух.

Пигментный обмен – совокупность процессов образования, превращения и распада в живых организмах окрашенных органических веществ сложного химического строения – пигментов. Важнейшие пигменты – порфирины, хромопротеиды, меланины, каротиноиды, флавоны и др. Такие хромопротеиды, как гемоглобин, миоглобин, каталаза, цитохромы, в качестве простетической (т. е. небелковой) группы содержат железопорфириновый комплекс (гем).Под пигментным обменом подразумевают обычно все процессы образования, превращения и распада пигмента крови (гемоглобина), точнее его пигментной небелковой части, и главного деривата этого пигмента – желчного пигмента (билирубина).В ряде случаев отмечается врожденная недостаточность энзимных систем, осуществляющих обмен билирубина, иногда отмечается временное торможение их под влиянием различных токсических и инфекционных факторов. Это приводит к возникновению желтухи. Патология пигментного обмена. При различных заболеваниях у человека могут возникать разные нарушения в обмене гемоглобина. Ярким проявлением расстройств в биосинтетических реакциях являются порфирии, при которых в результате недостаточности соответствующих ферментных систем блокируются те или иные этапы биосинтеза протопорфирина III и гемма

Виды желтух: механическая, печеночно-клеточная, гимолитическая, желтуха новорожденных.

19 Идиопатические гипербилирубинемии. Диагностические критерии, причины.

В нормальном состоянии концентрация общего билирубина в плазме составляет 0,3-1 мг/дл (1,7-17 мкмоль/л), 75% от общего количества билирубина находится в неконъюгированной форме (непрямой билирубин). В клинике конъюгированный билирубин называют прямым, потому что он водорастворим и может быстро взаимодействовать с диазореагентом, образуя соединение розового цвета, - это и есть прямая реакция Ван дер Берга. Неконъюгированный билирубин гидрофобен, поэтому в плазме крови содержится в комплексе с альбумином и не реагирует с диазореактивом до тех пор, пока не добавлен органический растворитель, например этанол, который осаждает альбумин. Неконъюгированный билирубин, взаимодействующий с азокрасителем только после осаждения белка, называют непрямым билирубином. Когда содержание билирубина превышает норму, говорят о гипербилирубинемии. В зависимости от того, концентрация какого типа билирубина повышена в плазме - неконъюгированного или конъюгированного, - гипербилирубинемию классифицируют как неконъюгированную и конъюгированную. У больных с печёночно-клеточной патологией, сопровождающейся длительным повышением концентрации конъюгированного билирубина, в крови обнаруживают третью форму плазменного билирубина, при котором билирубин ковалентно связан с альбумином, и поэтому его невозможно отделить обычным способом. В некоторых случаях до 90% общего содержания билирубина крови может находиться в этой форме.

Причинами гипербилирубинемии могут быть увеличение образования билирубина, превышающее способность печени экскретировать его, или повреждение печени, приводящее к нарушению секреции билирубина в жёлчь в нормальных количествах. Гипербилирубинемию отмечают также при закупорке желчевыводящих протоков печени. Во всех случаях содержание билирубина в крови повышается. При достижении определённой концентрации он диффундирует в ткани, окрашивая их в жёлтый цвет. Пожелтение тканей из-за отложения в них билирубина называют желтухой. Клинически желтуха может не проявляться до тех пор, пока концентрация билирубина в плазме крови не превысит верхний предел нормы более чем в 2,5 раза, т.е. не станет выше 50 мкмоль/л.

20 Биохимические изменения при печеночно-клеточной, гемолитической, механической желтухах.

Механическая (подпеченочная) желтуха обусловлена вне- или внутрипеченочной обструкцией желчных путей с нарушением оттока желчи либо полным перекрытием общего желчного протока (камень, воспаление, опухоль и т. д.). В этом случае из-за скопления желчи в печени печеночные капилляры растягиваются, гепатоциты сдавливаются и пропускают конъюгированный билирубин в кровеносные капилляры. Уровень конъюгированного билирубина в плазме крови повышается, и при превышении почечного порога (примерно 30 мкмоль/л) в моче появляется билирубин. Уменьшение или исчезновение билирубина в моче указывает на полное или частичное восстановление проходимости желчных путей.

При печеночно-клеточной желтухе, когда повреждена паренхима печени, одновременно повышается уровень конъюгированного и неконъюгированного билирубина. Первопричиной в этой ситуации могут быть нарушение клиренса неконъюгированного билирубина крови, нарушение выделения конъюгированного билирубина из печеночных клеток в желчные капилляры, проникновение конъюгированного билирубина из печеночных капилляров, переполненных желчью, в кровеносные капилляры через разрушенные печеночные клетки. Паренхиматозной бывает желтуха при остром, вирусном гепатите в токсической фазе, токсикозах. Уровень как конъюгированного, так и общего билирубина первично повышается при синдроме Дубина - Джонсона и при синдроме Ротора. Повышенная концентрация конъюгированного билирубина в крови сопровождается увеличенной экскрецией билирубина в мочу. При этой патологии интенсивность билирубинурии усиливается параллельно тяжести заболевания, достигает максимальных значений в разгар болезни, после чего начинает уменьшаться. В начале заболевания билирубин в моче практически не определяется, и этот тест не является ранним диагностическим признаком.

Гемолитическая желтуха характеризуется чрезмерным образованием неконъюгированного билирубина либо его задержкой в организме при нормальном выведении. В плазме крови повышается уровень общего билирубина за счет неконъюгированного билирубина. В моче же билирубин отсутствует, а реакция на уробилиноген положительная.Повышенный уровень неконъюгированного билирубина в сыворотке крови наблюдается при нарушении его метаболизма, в частности, при наследственном нарушении поглощения и транспорта желчных пигментов (синдром Жильбера). У людей с этим синдромом в большинстве случаев постоянно желтушные кожные покровы и слизистые. Причиной этого является неспособность печени захватывать, конъюгировать и выделять билирубин в желчные капилляры. Другой формой наследственной врожденной гипербилирубинемии является болезнь Криглера - Найяра, при которой значительно увеличен уровень неконъюгированного билирубина и может развиться поражение нервной системы.

21 Физиологическая желтуха новорожденных.

Физиологическая желтуха новорожденных -временная конъюгационная желтуха, возникающая у большинства здоровых новорожденных в первые дни жизни, вследствие того, что эритроциты плода содержат особый вид гемоглобина (Нв F - фетальный) и эти эритроциты после рождения разрушаются. Кроме этого, у новорожденных имеется и дефицит специального белка, который обеспечивает перенос билирубина через мембраны печеночных клеток. Способствует избыточному накоплению билирубина запаздывание созревания ферментативных систем печени, участвующих в превращении непрямого билирубина в прямой. Еще один фактор, влияющий на скорость выведения билирубина из организма – это низкая выделительная способность печени у новорожденных детей. По мере улучшения работы системы выделения билирубина и исчезновения избыточных кровяных клеток из русла крови, желтуха исчезает (обычно через 1-2 недели) и не причиняет никакого вреда ребенку. При выраженной желтухе иногда используют фенобарбитал для ускорения выведения билирубина.

23 Процессы дегидрирования и их роль в тканевом дыхании. Механизм действия ферментов, участвующих в окислительно-восстановительных реакциях (оксидаз, аэробных и анаэробных дегидрогеназ, гидрокисипероксидаз, оксигеназ).

Тканевое дыхание – это окисление органических веществ в клетках, сопровождающееся потреблением кислорода и синтезом воды.

Окисление начинается с дегидрирования, т. е. с того, что ферменты дегидразы активируют водород, входящий в состав окисляющегося вещества. Затем происходит окисление водорода до образования воды при участии ферментов оксидаз, которые представляют собой железосодержащие дыхательные ферменты.

Дыхательные ферменты, прочно связанные с клетками, — катализаторы тканевого дыхания, которое служит главным источником энергии. Они отличаются от оксидаз тем, что при их участии только активный О2 воспринимает водород тканей, тогда как при участии оксидаз водород может восприниматься и молекулярным О2. Кроме дегидраз и оксидаз, в окислительных процессах участвуют и другие ферменты, например пероксидазы, влияющие на образование соединений типа перекисей. Эти ферменты активируют О2, способствуют окислению трудно окисляемых в обычных условиях веществ.

Физико-химическая основа окислительных процессов в клетках — перенос электронов ферментами (цитохромами). В клеточном дыхании очень большую роль играет цитохромная система (цитохром + цитохромоксидаза). Цитохромы и флавопротеиды — переносчики водорода. В клеточном дыхании принимают также участие переносчики аминогрупп, фосфата и другие ферменты. Многие ферменты, участвующие в клеточном дыхании, являются производными витаминов группы В (В1, В2 и др.). Кроме того, в восстановительно-окислительных процессах в клетках участвует витамин С.

Таким образом, чрезвычайно сложный процесс клеточного дыхания осуществляется ферментами и витаминами. Интенсивность клеточного дыхания у людей с возрастом снижается.

24 Цикл трикарбоновых кислот. Химические реакции цикла. Биологическая роль ЦТК.

Цикл трикарбоновых кислот (цикл Кребса, цитратный цикл) – центральная часть общего пути катаболизма, циклический биохимический аэробный процесс, в ходе которого происходит превращение двух-и трехуглеродных соединений, образующихся как промежуточные продукты в живых организмах при распаде углеводов, жиров и белков, до CO 2. При этом освобожденный водород направляется в цепь тканевого дыхания, где в дальнейшем окисляется до воды, принимая непосредственное участие в синтезе универсального источника энергии – АТФ.

Данный цикл происходит в матриксе митохондрий и состоит из восьми последовательных реакций.

Как видно, за один оборот цикла, состоящего из восьми ферментативных реакций, происходит полное окисление («сгорание») одной молекулы ацетил-КоА. Для непрерывной работы цикла необходимо постоянное поступление в систему ацетил-КоА, а коферменты (НАД+ и ФАД), перешедшие в восстановленное состояние, должны снова и снова окисляться. Это окисление осуществляется в системе переносчиков электронов в дыхательной цепи, локализованной в мембране митохондрий. Образовавшийся ФАДН2 прочно связан с СДГ, поэтому он передает атомы водорода через KoQ. Освобождающаяся в результате окисления ацетил-КоА энергия в значительной мере сосредоточивается в макроэргических фосфатных связях АТФ. Из 4 пар атомов водорода 3 пары переносят НАДН на систему транспорта электронов; при этом в расчете на каждую пару в системе биологического окисления образуется 3 молекулы АТФ (в процессе сопряженного окислительного фосфорилирования), а всего, следовательно, 9 молекул АТФ. Одна пара атомов от сукцинатдегидрогеназы-ФАДН2 попадает в систему транспорта электронов через KoQ, в результате образуется только 2 молекулы АТФ. В ходе цикла Кребса синтезируется также одна молекула ГТФ (субстратное фосфорилирование), что равносильно одной молекуле АТФ. Итак, при окислении одной молекулы ацетил-КоА в цикле Кребса и системе окислительного фосфорилирования может образоваться 12 молекул АТФ.

Основная роль ЦТК заключается в генерации атомов водорода для работы дыхательной цепи, а именно трех молекул НАДН и одной молекулы ФАДН2.

Кроме этого, в ЦТК образуетсяодна молекула АТФ, сукцинил-SКоА, участвующий в синтезе гема, кетокислоты, являющиеся аналогами аминокислот – α-кетоглутарат для глутаминовой кислоты, оксалоацетат для аспарагиновой.

25 Механизмы регуляции ЦТК.

Цикл Кребса регулируется «по механизму отрицательной обратной связи», при наличии большого количества субстратов (ацетил-КоА, оксалоацетат), цикл активно работает, а при избытке продуктов реакции (NADH, ATP) тормозится. Регуляция осуществляется и при помощи гормонов, основным источником ацетил-КоА является глюкоза, поэтому гормоны, способствующие аэробному распаду глюкозы, способствуют работе цикла Кребса. Такими гормонами являются: инсулин и адреналин. Глюкагон стимулирует синтез глюкозы и ингибирует реакции цикла Кребса. Как правило работа цикла Кребса не прерывается за счёт анаплеротических реакций, которые пополняют цикл субстратами: Пируват + СО2 + АТФ = Оксалоацетат(субстрат Цикла Кребса) + АДФ + Фн.

26 Анаболические функции цикла Кребса. Биосинтез гема.

Анаболическая функция — использование субстратов цикла на синтез органических веществ:  Оксалацетат — глюкоза, Асп, Асн. Сукцинил-КоА — синтез гема. CО2 — реакции карбоксилирования.  Синтез тетрагидропиррольных колец начинается в митохондриях. Из сукцинил-КоА, промежуточного продукта цитратного цикла, конденсацией с глицином получается продукт, декарбоксилирование которого приводит к 5-аминолевулинату (ALA). Отвечающая за эту стадию 5-аминолевулинат-синтаза (ALA-синтаза) является ключевым ферментом всего пути. Экспрессия синтеза ALA-синтазы тормозится гемом, т. е. конечным продуктом, и имеющимся ферментом. После синтеза 5-аминолевулинат переходит из митохондрий в цитоплазму, где две молекулы конденсируются в порфобилиноген, который уже содержит пиррольное кольцо. Порфобилиноген-синтаза ингибируется ионами свинца. Поэтому при острых отравлениях свинцом в крови и моче обнаруживают повышенные концентрации 5-аминолевулината. На последующих стадиях образуется характерная для порфирина тетрапиррольная структура. Связывание четырех молекул порфобилиногена с отщеплением NH2-групп и образованием уропорфириногена III катализируется гидроксиметилбилан-синтазой. Для образования этого промежуточного продукта необходим второй фермент, уропорфириноген III-синтаза. Отсутствие этого фермента приводит к образованию «неправильного» изомера — уропорфириногена I. Тетрапиррольная структура уропорфиринoгена III все еще существенно отличается от гема. Так, отсутствует центральный атом железа, а кольцо содержит только 8 вместо 11 двойных связей. Кроме того, кольца несут только заряженные боковые цепи R (4 ацетатных и 4 пропионатных остатков). Так как группы гема в белках функционируют в неполярном окружении, необходимо, чтобы полярные боковые цепи превратились в менее полярные. Вначале четыре ацетатных остатка (R1) декарбоксилируются с образованием метильных групп. Образующийся копропорфириноген III снова возвращается в митохондрии. Дальнейшие стадии катализируются ферментами, которые локализованы на/или внутри митохондриальной мембраны. Прежде всего под действием оксидазы две пропионатные группы (R2) превращаются в винильные. Модификация боковых цепей заканчивается образованием протопорфириногена IX. На следующей стадии за счет окисления в молекуле создается сопряженная π-электронная система, которая придает гему характерную красную окраску. При этом расходуется 6 восстановительных эквивалентов. В заключение с помощью специального фермента, феррохелатазы, в молекулу включается атом двухвалентного железа. Образованный таким образом гем или Fe-протопорфирин IX включается, например, в гемоглобин и миоглобин, где он связан нековалентно, или в цитохром С, с которым связывается ковалентно