Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЭОС для СВФ_1 / АД, его мех. хар-ка.doc
Скачиваний:
394
Добавлен:
12.03.2016
Размер:
2.54 Mб
Скачать

5.7. Способы и схемы пуска электроприводов с асинхронными двигателями

Асинхронные электродвигатели с короткозамкнутым ротором являются основным приводом большинства судовых механизмов, не требующих широкого регулирования частоты вращения. Они просты в изготовлении и эксплуатации, обладают высокой надежностью и долговечностью, имеют сравнительно низкую стоимость.

Пусковые свойства асинхронного двигателя оцениваются его пусковы­ми характеристиками:

значением пускового тока Iп или его кратностьюIп/Iном;

значением пускового Мп или его кратностью Мп/Мп ном;

продолжительностью и плавностью пуска двигателя в ход;

сложностью пусковой операции;

экономичностью пусковой операции (стоимостью и надежностью пусковой аппаратуры), а также потерями энергии в ней.

Значение пускового тока

,………………….(7)

где R1 иX1 – активное и индуктивное сопротивления статора, аR2 и Х2 – приведённые активное и индуктивное сопротивления ротора.

Из анализа (7) следует, что улучшить пусковые свойства двигателя можно увеличением активного сопротивления цепи ротора R2, так как в этом случае уменьшается пусковой ток и увеличивается пусковой момент. Уменьшение напряженияU1, влияет благоприятно наIп (уменьшая его значение), однако пусковой момент Мп при этом также уменьшается. Возможность применения того или иного способа улучшения пусковых характеристик определяется видом двигателя, условиями эксплуатации требованиями к нему.

Управление приводом для нереверсивных механизмов заключается чаще всего в дистанционном пуске и отключении электродвигателя. Схема такого рода легко может быть автоматизирована посредством замены кнопок ручного управления на устройство, замыкающее или размыкающее контакты при достижении порогового значения параметра, когда необходимо включить или выключить электродвигатель.

а) Наиболее простой способ подключения асинхронного двигателя – прямой пуск посредством магнитного пускателя (рис.5.18).

Здесь при нажатии кнопки SB2 (Пуск) получает питание катушка линейного контактора КМ, и двигатель включается на сеть. Нажатием кнопкиSB1 (Стоп) катушка КМ теряет питание, и двигатель отключается от сети. При перегрузке электродвигателя размыкается контакт теплового реле КК, который также обесточивает цепь контактора КМ. Пусковой ток асинхронного электродвигателя с короткозамкнутым ротором при прямом включении на сеть достигает (6-7)Iном. Если, например, мощность пускаемого двигателя составляет 30% мощности работающего генератора, то такой большой пусковой ток вызывает резкое кратковременное снижение напряжения сети, называемое провалом напряжения на 15-20%. При большей относительной мощности двигателя провал напряжения значительно увеличивается, что может привести к отключению магнитных пускателе работающих электроприводов, к всплеску тока генератора и срабатыванию его защиты и т.п. Поэтому двигатели соизмеримой с генератором мощности на судах пускаются по специальным схемам, которые ограничивают силу пускового тока.

Рис.5.18. Схема прямого пуска АД.

б) Пуск с включением резисторов в цепь статора (рис.5.19). Разгон двигателя осуществляется в две ступени. На первой в цепь всех трех фаз включается сопротивление, которое на второй степени шунтируется контактами контактора ускорения КМ2:1. Время работы на пусковой ступени контролируется электромагнитным реле времени КТ1. Схема работает следующим образом. При нажатии кнопки SB1 (Пуск) получает питание реле КТ1, которое своими контактами КТ1:1 шунтирует кнопкуSB1 и включает контактор ускорения КМ2, а он размыкает свои контакты КМ2:1, шунтирующие пусковые сопротивления и тем самым подготавливает схему к пуску. Контактор КМ2 замыкает цепь линейного контактора КМ1, который подключает двигатель на сеть через пусковое сопротивлениеR. Блок-контакт КМ1:3 шунтирует кнопкуSB1 и контакт КМ2:2, обеспечивая питание катушки КМ1. Второй блок-контакт КМ1:2 разрывает цепь питания реле КТ1, которое с выдержкой времени размыкает свой контакт в цепи контактора КМ2. Контактор КМ2 своими контактами КМ2:1 шунтирует пусковое сопротивлениеR.

Пусковое сопротивление Rограничивает пусковой ток до необходимого значения

;

где R– соответственно активное сопротивление двигателя в пусковом режиме.

Следует иметь в виду, что это сопротивления при разгоне не остаются постоянными, так как входящие в них приведенные сопротивления ротора зависят от скольжения. Потеря напряжения U=IпRв пусковом сопротивлении уменьшает напряжение на статоре двигателяUд.

а)

б)

Рис.5.19. Схема (а) и график (б) пуска АД введением пускового сопротивления в цепь

статора

Для асинхронного двигателя момент на валу пропорционален квадрату напряжения. Поэтому пусковая механическая характеристика при включенном в цепь статора резистора (кривая 1, рис.5.19, б) имеет значительно меньший пусковой момент, чем при номинальном напряжении (Мп1Мп2), характерном для прямого включения двигателя на сеть (кривая 2). Может случиться так, что при выборе пускового сопротивленияRПдля уменьшения пускового тока оно окажется настолько большим, что пусковой момент Мп1будет недостаточен для преодоления момента сопротивления и пуск станет невозможным.

в) Автотрансформаторный пуск (рис.5.20) предусматривает пусковое подключение двигателя от источника пониженного напряжения – автотрансформатора. Здесь пусковой ток, потребляемый из сети за счет трансформации напряжения, меньше, чем ток, потребляемый двигателем при прямом пуске. Это приводит к тому, что в рассматриваемой схеме в отличие от предшествующих уменьшение пускового тока, происходит в той же степени, что и при уменьшении пускового момента на двигателе.

Схема автотрансформаторного пуска имеет повышенную стоимость и ее использование оправдано, когда другие более дешевые схемы не обеспечивают необходимого снижения пускового тока. Работа схемы происходит следующим образом. При нажатии кнопки SB2 включается контактор КМ2, который контактом КМ2:1 подключает автотрансформаторTVи шунтирует кнопкуSB2, а также подает питание на линейный контактор КМ1. Двигатель подключается к сети черезTV, реле времени КТ1 клапанного типа включается блок-контактом КМ1:2. Через отрезок времениtконтакт КТ1:1 замкнет цепь питания контактора ускорения КМ3, который своим контактом КМ3:1 шунтирует автотрансформатор и подключает двигатель прямо на сеть. Блок-контакт КМ3:2 размыкает цепь питания контактора КМ2, который, в свою очередь, разомкнет цепь автотрансформатора. Второй блок-контакт КМ3:3 сохранит цепь питания контактора КМ1.

Рис.5.20. Схема автотрансформаторного пуска АД

г) Пуск переключением обмотки статора со звезды на треугольник осуществляется по схеме, изображенной на рис.5.21. При пуске обмотка статора соединена звездой, пусковое напряжение на фазе будет в раз меньше номинального, что приведёт к уменьшению пускового тока в 3 раза. Вместе с тем, пусковой момент, пропорциональный квадрату напряжения, уменьшится также в три раза, что не всегда допустимо, особенно для механизмов, обладающих значительным статическим моментом сопротивления.

Схема работает следующим образом. При нажатии кнопки SB2 получает питание электромагнитное реле времени КТ1, подключающее контактор КМ2 (звезда), который своими главными контактами КМ2:1 замыкает трехфазную обмотку статора по схеме звезда, а вспомогательными контактами КМ2:3 включает линейный контактор КМ1 и разрывает цепь контактора КМ3 (треугольник). Контактор КМ1 своими главными контактами КМ1:1 подключает двигатель к сети, а блок- контактами КМ1:4 шунтирует кнопку пускSB2. В тоже время блок-контакт КМ1:2 обесточивает реле времени КТ1, которое отпускает с выдержкой времени и своим контактом КТ1:1 обесточивает контактор КМ2, который размыкает соединение звезда. Блок-контакт КМ2:3 замыкает цепь контактора КМ3, который собирает схему соединений треугольник. Работа контакторов КМ1, КМ2, КМ3 электрически взаимно сблокирована соответствующими блок-контактами, исключающими непредусмотренную или неправильную последовательность соединений.

Рис.5.21. Схема пуска АД переключением обмотки статора со звезды на

треугольник

д) Плавный пуск электродвигателей переменного тока. В настоящее время широко начинают применяться устройства плавного пуска электродвигателей переменного тока на базе тиристорных коммутаторов и преобразователей. За счёт плавного разгона ЭД удаётся достигнуть значительного уменьшения величины пускового тока и тем самым ограничить его влияние на напряжение судовой сети.

Современное устройство плавного пуска представляет собой нереверсивный трехфазный тиристорный коммутатор (ТК) с многофункциональной системой управления (СУ) на базе микропроцессорного контроллера (МК) и развитым пользовательским интерфейсом, аппаратно обеспечиваемым устройством ввода-вывода дискретных сигналов (УВВ). Принцип действия и устройство пускателя поясняет функциональная схема, приведенная на рис. 5.22.

Рис. 5.22 Устройство плавного пуска

Основным силовым элементом ТК является тиристорный ключ, представляющий собой цепную схему, состоящую из ряда последовательно соединенных звеньев, а каждое звено — два включенных встречно-параллельно тиристора. Для выравнивания напряжения между последовательно включенными тиристорами в статических и динамических режимах параллельно каждому звену включены резисторная и резисторно-ёмкостная цепи, а также датчик состояния тиристоров.

Информация о состоянии тиристоров передается в систему управления по оптоволоконному кабелю. Каждый из тиристоров ключа имеет свой импульсный трансформаторный узел управления. Для уменьшения разброса во временах включения тиристоров, включенных последовательно, первичные обмотки их импульсных трансформаторов соединены последовательно. Потенциальное разделение между высоковольтной силовой частью и низковольтной системой управления осуществляется с помощью оптоволоконного кабеля и импульсных трансформаторов.

В Триол АС15 имеется три описанных выше тиристорных ключа по числу фаз питания. Изменяя угол управления (включения) тиристоров можно регулировать подводимое к статорной обмотке двигателя напряжение и, соответственно, ток. Снижение подводимого к статорной обмотке двигателя напряжения позволяе уменьшить токи в динамических режимах (при пуске) и избежать ударных нагрузок на механизм. Наличие регулятора тока обеспечивает поддержание заданного значения тока практически в течение всего времени разгона с помощью увеличения напряжения на выходе ТК. Это достигается уменьшением угла управления тиристоров. Разгон с заданным значением пускового тока продолжается до тех пор, пока текущее значение угла управления тиристорами больше также изменяющегося угла сдвига между первыми гармониками напряжения и тока. Когда это соотношение не соблюдается, что имеет место в конце пуска, тиристоры открываются полностью. К этому моменту, однако, ток уже не должен превышать заданного значения при правильно настроенных параметрах пускового устройства.

Изменяя коэффициент усиления и постоянную интегрирования регулятора тока, а также начальное значение угла открывания тиристоров и величину (кратность) пускового тока можно получить требуемые динамические характеристики. Следует учесть, что величина пускового тока не должна превосходить номинального значения тока, указанного в паспорте конкретного пускового устройства. В Триол АС15 при нагрузках, значительно меньших номинального значения, предусматривается режим энергосбережения, при котором за счет изменения угла управления тиристорами привод работает с пониженным напряжением. Пускатель может осуществлять торможение двигателя:

- выбегом, путем снятия управляющих импульсов с тиристоров ТК;

- скатом, путем снижения подводимого к статорной обмотке электродвигателя напряжения (плавным увеличением углов управления тиристорами ТК);

- динамическим торможением, путем подачи иа статорную обмотку двигателя постоянного по направлению напряжения.

Датчики тока ДТ1, ДТ2 на трансформаторах тока в силовом канале АС15 служат для контроля, регулирования и измерения величины пускового или нагрузочного тока электродвигателя, в т.ч. для защиты от токов перегрузки и короткого замыкания.

Датчики напряжения ДН1 и ДН2 на высоковольтных трансформаторах напряжения служат для синхронизации системы управления с силовой питающей сетью, контроля наличия всех фаз силового напряжения и правильности их чередования.

Многоканальный источник питания ИП преобразует сетевое переменное напряжение 380 В в систему напряжений постоянного тока требуемых уровней и степени стабильности, гальванически связанных и не связанных между собой, для питания устройств правления.

Микропроцессорный контроллер МК осуществляет формирование режимов работы устройства с заданными параметрами с помощью сигналов управления: сигналов управления тиристорами, сигналов защиты и аварийного отключения АС15, приёма и пер

дачи внешних управляющих, задающих и информационных сигналов.

Устройство ввода/вывода УВВ предназначено для приёма и передачи внешних управляющих сигналов.

УВВ имеет набор дискретных входов и выходов. Во входные и выходные цепи УВВ включены устройства гальванической развязки для потенциального разделения с внешними управляющими цепями. Формирователи импульсов ФИ (драйверы) предназначены для формирования требуемых уровней управляющих сигналов тиристоров, гальванического разделения силовых цепей и цепей управления тиристоров и МК. В составе устройства предусмотрен встроенный пульт управления ПУ, который содержит клавиатуру для управления режимами работы, задания и программирования параметров, а также элементы индикации и сигнализации для отображения значений па_

раметров и диагностирования. По согласованию с Заказчиком в комплект поставки может входить пульт дистанционного управления (ПДУ), функции которого аналогичны ПУ.

Для удобства работы оператора программируемые и информационные параметры устройства сведены в функциональные группы. Далее по тексту ссылки а соответствующие параметры даны в форме [ХХ YY],

где ХХ — № группы, YY — № параметра.

Ниже на рис. 1.2 … рис. 1.4 проиллюстрировано выполнение отдельных технологических процедур в процессе пуска и в процессе останова двигателя соответственно.торный ключ, представляющий собой цепную схему, состоящую из ряда последовательно соединенных

звеньев, а каждое звено — два включенных встречно-параллельно тиристора. Для выравнивания напряжения между последовательно включенными тиристорами в

статических и динамических режимах параллельно каждому звену включены резисторная и резисторно_емкостная цепи, а также датчик состояния тиристоров. Информация о состоянии тиристоров передается в систему управления по оптоволоконному кабелю. Каждый из тиристоров ключа имеет свой импульсный трансформаторный узел правления. Для уменьшения разброса во временах включения тиристоров, включенных послдовательно, первичные обмотки их импульсных трансформаторов соединены последовательно. Потенциальное разделение между высоковольтной силовой частью и низковольтной системой управления осуществляется с помощью оптоволоконного кабеля и импульсных трансформаторов. В Триол АС15 имеется три описанных выше тиристорных ключа по числу фаз питания. Изменяя угол управления (включения) тиристоров можно регулировать подводимое к статорной обмотке двигателя напряжение и, соответственно, ток. Снижение подводимого к статорной обмотке двигателя напряжения позволяет уменьшить токи в динамических режимах (при пуске) и избежать ударных нагрузок на механизм. Наличие регулятора тока обеспечивает поддержание заданного значения тока практически в течение всего времени разгона с помощью увеличения напряжения на выходе ТК. Это достигается уменьшением угла управления тиристоров. Разгон с заданным значением пускового тока продолжается до тех пор, пока текущее значение угла управления тиристорами больше также изменяющегося угла сдвига между первыми гармониками напряжения и тока. Когда это соотношение не соблюдается, что имеет место в конце пуска, тиристоры открываются полностью. К этому моменту, однако, ток уже не должен превышать заданного значения при правильно настроенных параметрах пускового устройства.

Соседние файлы в папке ЭОС для СВФ_1