Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Geofizicheskie_metody_issledovania_zemnoy_kory.doc
Скачиваний:
366
Добавлен:
07.03.2016
Размер:
7.02 Mб
Скачать

7.3.3. Электрическое поле точечного источника постоянного тока над двухслойной средой.

Простейшей, но очень важной для практики электроразведки методом сопротивлений, одномерной прямой задачей является задача об электрическом поле и кажущемся сопротивлении на поверхности полупространства, верхнее из которых воздух, а нижнее - двухслойная горизонтально слоистая среда с мощностью верхнего слоя , нижнего, УЭС слоеви(воздух) (см. рис. 3.3).

Поставленная задача могла бы быть решена с помощью уравнения (3.2), которое при превращается в уравнение Лапласа, где- потенциал в любой точке М с напряженностью электрического поля.

Рис.. 3.3.Решение прямой задачи о поле точечного источника постоянного тока над двухслойной средой методом зеркальных отражений

Однако ее можно быстро решить методом зеркальных отражений. Согласно правилам метода зеркальных отражений, урав-нение Лапласа и физические требования, в том числе граничные условия, выполняются, если потенциал в одномерной среде, где расположен точечный источник, принять равным сумме потенциалов этого источника ( ) и всех его многократных отражений от границ раздела () с коэффициентами отражений, равными на границеI , а на границеII (т.к.).

На рис. 3.3 показано, как эти источники расположены. При этом обозначено

где .

Таким образом, искомое выражение для потенциала получает вид:

(3.9)

Выражение для КС (3.1) можно записать в виде: , где- напряженность электрического поля. Но, поэтому. Подставив в эту формулу производнуюиз (3.9), получим

Откуда

(3.10)

Анализируя эту формулу, можно найти асимптотические выражения , равныеи. В самом деле, при, при

(т.к. , аравнакак сумма членов геометрической прогрессии).

С помощью формулы (3.10), справедливой для трехэлектродной и симметричной четырехэлектродной градиент-установок, принято строить теоретические двухслойные кривые - графики зависимости ) от. Они называются двухслойными теоретическими кривыми ВЭЗ (вертикальное электрическое зондирование) (см. 8.2), или двухслойной палеткой ВЭЗ (см. рис. 3.4).

Рис. 3.4.Двухслойная палетка ВЭЗ: 1 и 2 - теоретические и полевая кривые

Более громоздкое решение получается в задаче о поле точечного источника над многослойной горизонтально слоистой средой, а еще сложнее решение для такой же среды, но при возбуждении поля дипольными гармоническими или импульсными источниками.

Одномерные прямые задачи электроразведки для многослойных горизонтально слоистых сред для любых первичных полей все-таки сводятся к аналитическим формулам для расчета КС. В результате принято строить кривые КС, аналогичные приведенным на рис. 3.4.

Двухмерные и трехмерные прямые задачи электроразведки сводятся к аналитическим формулам лишь для тел простой формы (шар, пласт, цилиндр) в однородной среде. В более общих случаях получаются лишь приближенные численные решения, получаемые с помощью ЭВМ.

7.3.4. Принципы решения обратных задач электроразведки.

Накопленный материал по физическому и математическому моделированию прямых задач электроразведки привел к созданию методов решения обратных задач, т.е. определению тех или иных параметров геоэлектрического разреза по наблюденным графикам ,или, например, кривым КС. Решение обратных задач неоднозначно в силу его некорректности, как и всех обратных задач математической физики. Некорректность проявляется в том, что малым изменениям наблюденных параметров поля могут соответствовать большие изменения параметров разреза. Этот физический факт получил название принципа эквивалентности. Принципом эквивалентности объясняется, например, невозможность точного определения мощностей () и удельных электрических сопротивлений () тонких слоев, горизонтально слоистого разреза, хотя такие параметры, как продольные проводимости () либо поперечные сопротивления (), в определенных разрезах расcчитываются однозначно (см. 9.1).

Методы решения обратных задач электроразведки являются основой количественной интерпретации данных электроразведки (см. 9). Сущность их сводится к подбору и сравнению полевых графиков и кривых с теоретическими, полученными в результате решения прямых задач. Для этого созданы альбомы типичных теоретических кривых (палетки) или программы для их теоретического расчета с помощью ЭВМ (см. 9.1).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]