- •Сибирский государственный
- •Предисловие
- •Введение
- •Советы студентам
- •Правила техники безопасности при работе в термической и металлографической лабораториях.
- •Лабораторная работа № I макроскопический метод исследования металлов и сплавов
- •Теоретические сведения Характеристика макроанализа и области его применения
- •Макроанализ изломов
- •Макроанализ шлифов
- •Выявление ликвации серы
- •Выявление ликвации фосфора
- •Выявление макроструктуры
- •Выявление дефектов, нарушающих сплошность металла
- •Порядок выполнения работы и содержание отчета
- •Варианты заданий
- •Контрольные вопросы
- •Лабораторная работа №2 микроскопический анализ машиностроительных материалов
- •Теоретические сведения Принцип действия светового микроскопа
- •Порядок выполнения работы и содержание отчета
- •Лабораторная работа №3 механические свойства сплавов
- •Теоретические сведения
- •Порядок выполнения работы и содержание отчета
- •Лабораторная работа №4 построение диаграммы состояния сплавов «олово - цинк» термическим методом
- •Теоретические сведения Назначение и сущность термического анализа
- •Экспериментальная часть работы
- •Методика построения диаграммы состояния сплавов «олово цинк»
- •Изучение процессов кристаллизации и микроструктур сплавов «олово - цинк»
- •Порядок выполнения работы и содержание отчета
- •Контрольные вопросы
- •Лабораторная работа №5 изучение диаграмм состояния двойных систем
- •Теоретические сведения
- •Порядок выполнения работы и содержание отчета
- •Приложение I
- •Лабораторная работа № 6 изучение диаграммы состояния сплавов железа с углеродом
- •Теоретические сведения Основные свойства железа
- •Диаграмма фазового равновесия «железо - углерод»
- •Основные фазы, области, линии и точки диаграммы
- •Построение кривых охлаждения сплавов заданной концентрации с использованием диаграммы состояния
- •Порядок выполнения работы и содержание отчета
- •Контрольные вопросы
- •Лабораторная работа №7 изучение микроструктуры углеродистых сталей и чугунов в равновесном состоянии
- •Теоретические сведения
- •Порядок выполнения работы и содержание отчета
- •Контрольные вопросы
- •Изучение микроструктуры легированных сталей в равновесном состоянии
- •Теоретические сведения
- •Порядок выполнения работы и содержание отчета
- •Лабораторная работа №9 термическая обработка углеродистых сталей
- •Теоретические сведения
- •Порядок выполнения работы и содержание отчета
- •Лабораторная работа № 10 изучение микроструктур сплавов на основе алюминия
- •Теоретические сведения
- •Принципы термического упрочнения алюминиевых сплавов
- •Порядок выполнения работы и содержание отчета
- •Лабораторная работа №11 изучение микроструктуры сплавов на основе меди
- •Теоретические сведения
- •Порядок выполнения работы и содержание отчета
- •Контрольные вопросы
- •Лабораторная работа № 12 изучение микроструктуры сплавов на основе титана
- •Теоретические сведения
- •Порядок выполнения работы и содержание отчета
- •Структура композитов с полимерной матрицей
- •Композиты с металлической матрицей
- •Определение объемной доли волокон в композите методом количественной металлографии
- •Порядок выполнения работы и содержание отчета
- •Контрольные вопросы
- •Лабораторная работа № 14 изучение структуры металла после пластической деформации и рекристаллизации
- •Теоретические сведения Влияние пластической деформации на структуру и механические свойства металлов и сплавов
- •Превращения в наклепанном металле при нагреве. Изменения его структуры и свойств
- •Порядок выполнения работы и содержание отчета
- •Контрольные задания
- •Контрольные вопросы
Порядок выполнения работы и содержание отчета
1. Изучить маркировку сталей;
2. Изучить механические свойства материалов и способы их определения;
3. Получить образцы для испытаний;
4. Провести испытания образцов на твердость;
5. По результатам испытаний и табличным данным построить графики, отражающие зависимость твердости, прочности и пластичности от содержания углерода;
6. Составить письменный отчет по работе. Содержание отчета: название и цель работы, теоретическая часть, таблица «Механические свойства сталей», графики, выводы.
Контрольные вопросы
1. Как маркируют стали обыкновенного качества, качественные, легированные?
2. Что такое прочность? Методы измерения, характеристики, единицы измерения.
3. Чем отличается упругая деформация от пластической?
4. Что такое пластичность? Методы измерения, характеристики, единицы измерения.
5. Что такое твердость? Методы определения твердости.
6. Что такое ударная вязкость?
7. Чем отличаются статические методы испытаний от динамических?
Лабораторная работа №4 построение диаграммы состояния сплавов «олово - цинк» термическим методом
Цель работы: освоение методики определения температур затвердевания сплавов «олово-цинк»; построение диаграммы состояния сплавов; изучение процессов кристаллизации и микроструктур полученных сплавов.
Теоретические сведения Назначение и сущность термического анализа
Термический анализ является наиболее распространенным методом изучения сплавов, особенно при затвердевании их из жидкого состояния. Кристаллизация, плавление, полиморфные и другие фазовые превращения в металлах и сплавах всегда сопровождаются выделением или поглощением тепла. Термический анализ сводится к регистрации этих тепловых эффектов и определению соответствующих им температур. Для этого расплавленный металл охлаждают, одновременно записывая изменение температуры во времени. Затем строят кривые охлаждения, откладывая по оси абсцисс время, а по оси ординат - температуру.
На рис. 4.1 приведены кривые охлаждения аморфного и кристаллического тела, в данном случае чистого металла. Аморфное тело затвердевает постепенно, без тепловых эффектов и кривая охлаждения I на всем протяжении идет плавно.
Рис. 4.1. Кривые охлаждения:
1 - аморфного тела;
2 - кристаллического тела
Кривая охлаждения кристаллического тела отличается наличием перегибов и горизонтальных площадок, по которым определяют температуры фазовых превращений (критических точек).
Кривая охлаждения чистого металла 2 показывает, что до начала затвердевания (до точки а) температура снижается монотонно, а затем (в точке а) кривая переходит в горизонтальную площадку, свидетельствующую о протекании фазового превращения при постоянной температуре (до точки б), после чего температура продолжает монотонно снижаться до комнатной. Горизонтальный участок а - б соответствует переходу металла из жидкого в твердое состояние. Выделяющаяся теплота кристаллизации в течение некоторого времени вызывает остановку снижения температуры. Кривая охлаждения 2 характерна для чистых металлов, не имеющих полиморфных превращений, и сплавов эвтектического состава. В других случаях возможно наличие нескольких горизонтальных площадок и перегибов, соответствующих фазовым превращениям.
Рис. 4. 2. Схема термоэлектрического пирометра
Измерение температуры осуществляется с помощью термоэлектрического пирометра, который состоит из двух частей: термопарной Т и измерительной (милливольтметра) М. Проволоки из двух разных металлов I и 3 (рис. 3.2), сваренные в точке 2 (так называемый горячий спай), образуют термопару, которая соединена проводами 4 и с милливольтметром М. Место соединения проволок I и 3 с проводами 4 и 5 называется холодным спаем, который должен находиться при постоянной температуре 0 С (или комнатной). Горячий спай термопары помещают в среду, температура которой должна быть измерена.
При нагреве горячего спая возникает термоэлектродвижущая сила (ТЭДС), величина которой пропорциональна температуре измеряемой среды. Под действием ЭДС происходит отклонение стрелки 6 милливольтметра М, шкала 7 которого отградуирована в градусах Цельсия. Чем выше температура горячего спая, тем больше угол отклонения стрелки милливольтметра. В зависимости от температуры нагрева применяют различные термопары: до 1600 С - платино-платинородиевые (ПП), до 1200 С - хромель-алюмелевые (ХА), до 800 С - хромель-копелевые (ХК) и др.