Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основания и фундаменты.docx
Скачиваний:
66
Добавлен:
06.03.2016
Размер:
645.51 Кб
Скачать

1 Критерий:

· ∆ S(см) ≈ f(см),

где ∆ S – осадка фундамента (деформация основания); f – деформация изгиба фундамента.

Таким образом, при расчёте гибких фундаментов необходимо одновременно учитывать и деформации фундамента и его осадки.

При расчёте ленточных фундаментов, загруженных неравномерно сосредоточенными силами необходимо учитывать изгиб в продольном направлении.

Вследствие изгиба фундамента конечной жёсткости, давление на грунт увеличивается в местах передачи фундаменту сосредоточенных сил и уменьшается в промежутках между этими силами (см. расчётную схему).

Принципиальная расчётная схема деформирования гибкого фундамента на упругом основании.

2 Критерий:

· h > 1 / 3ℓ - абсолютно жёсткие фундаменты.

· h < 1 / 3ℓ - гибкие фундаменты.

Здесь h – высота фундамента; ℓ - длина фундамента.

Единого метода расчета гибких фундаментов не существует, а используется несколько способов в зависимости от грунтовых условий и решаемой задачи.

  1. Взаимодействие свай с окружающим грунтом

Взаимодействие свай с окружающим грунтом носит сложный характер и зависит от процессов происходящих в грунте при изготовлении и при их работе под эксплуатационными нагрузками. Процессы оказывают влияние на несущую способность и осадки свайного фундамента, от их правильного учета во многом зависит точность расчета и экономическая эффективность применения свай.

      Процессы, происходящие в грунте при устройстве свайных фундаментов зависят от типа свай, грунтовых условий, технологии погружения или изготовления свай и т.п..

      Так при погружении забивной сваи (сплошной сваи) объем грунта равный объему сваи вытесняется вниз, вверх и в стороны, в результате чего грунт вокруг сваи уплотняется.

      Но если свая забивается в плотные пески, может наблюдаться обратный эффект – разуплотнение грунта.

      Учитывая явление уплотнения грунта, рекомендуют во всех случаях, а в плотных грунтах особенно, забивку вести от середины свайного поля к его периметру. Если это правило не соблюдается, средние сваи из-за сильного уплотнения грунта не всегда удается погрузить до заданной глубины.

      Но если брать расстояние между сваями в свайном фундаменте >6d, то это приведет к огромным размерам ростверков, поэтому принято сваи забивать на расстоянии друг от друга равном 3d.

     Но изменение напряженного состояния и плотности в грунтах при забивке свай могут носить и временный характер, т.е. грунт может обладать временным сопротивлением погружению сваи.

П ри забивке свай в маловлажные пески плотные и средней плотности под нижним концом образуется переуплотненная зона, препятствующая дальнейшему погружению сваи вплоть до нулевого значения отказа, и дальнейшая попытка забить сваю может привести к разрушению ее ствола. Но оставив эту сваю в покое, через некоторое время в результате релаксации напряжений сопротивление грунта под нижним концом сваи снизится и можно снова продолжить  ее забивку до проектной отметки.

При забивке свай в глинистые грунты часть связной воды переходит в свободную, грунт на контакте со сваей разжижается (тиксотропное разжижение) и сопротивление погружению сваи наоборот – снижается, происходит так называемое засасывание сваи. Здесь также, если прекратить забивку, то через некоторое время структура грунта восстановится, и несущая способность сваи значительно возрастет.

  1. Расчет и проектирование свайных фундаментов: основные положения, выбор конструкции

Согласно рекомендациям сельскохозяйственные здания в зависимости от характера технологического процесса и вида возможного увлажнения грунтов подразделяются на следующие группы: животноводческие здания с мокрым технологическим процессом и оборудованные водосодержащими лотками навозоудаления, вследствие чего возможно интенсивное замачивание грунта, приводящее к его частичной просадке или (реже) всей просадочной толщи; здания, не имеющие мокрого технологического процесса, оснащенные сетями и устройствами производственного бытового назначения, с удельным расходом воды не более площади здания в сутки. А также здания с одиночными с перечными каналами для гидросплава навоза: здания, не оснащенные сетями и устройствами, с расположением несущих сетей от здания на расстояниях, превышающих полуторную глубину просадочной толщи, вследствие чего возможно только медленное повышение влажности грунтов.

Такая классификация сельскохозяйственных зданий позволяет более дифференцированно назначать несущую способность пирамидальной сваи с учетом возможного увлажнения грунтов основания, обеспечивая при этом нормальную эксплуатацию зданий.

При проектировании фундаментов на коротких пирамидальных сваях важным вопросом является правильный выбор их размеров и угла коничности свай.

Предварительный выбор размеров пирамидальных свай производится на основании следующего: при увеличении угла коничности свай одинакового объема от 5 до 13° увеличивается зона уплотнения в плане (в связном грунте) и удельная несущая способность единицы объема сваи возрастает до 30%, однако погружение свай с наибольшими углами коничности в плотные грунты затруднительно; в грунтовых условиях I типа по просадочности потери несущей способности сваи при замачивании тем меньше, чем больше угол коничности сваи; короткие пирамидальные сваи с углами коничности 5...9° целесообразно применять в грунтах плотных и средней плотности, сваи же с углом коничности 10... 13° - в грунтах рыхлых; при наличии верхнего более прочного слоя грунта длина свай в первую очередь определяется исходя из недопущения прорезки этого слоя и выхода зон уплотнения в массив слабого грунта.

Расчет фундаментов на коротких пирамидальных сваях и их оснований производится в соответствии со СНиП II-17-77 «Свайные фундаменты» по предельным состояниям двух групп: по несущей способности грунта основания свайных фундаментов и по прочности конструкций фундаментов; по осадкам, перемещению свай и по образованию или раскрытию трещин в железобетонных сваях.

В зависимости от конструктивной схемы сельскохозяйственного здания или сооружения сваи в плане могут устраиваться в виде: лент - для зданий с неполным несущим каркасом, в которых преобладают равномерно распределенные нагрузки.

Сваи в этом случае располагаются в один или в шахматном порядке в два и более рядов; одиночных свай - под отдельно стоящие опоры каркасных зданий; кустов из двух и более свай в случаях, если несущая способность одиночной пирамидальной сваи ниже требуемой; сваи располагают на участке треугольной, прямоугольной и квадратной формы в плане; сплошного свайного поля - для сооружений, в которых нагрузка распределена по всей площади, например резервуары, силосные сооружения и др.

  1. Расчет и проектирование свайных фундаментов: определение числа свай, внецентренно нагруженный свайный фундамент

Основное отличие центрально нагруженного фундамента от внецентренно нагруженного в различных вариантах, включая использование такой технологии, как армирование, заключается в том, что в последнем случае максимальная нагрузка приходится на край несущей конструкции, что обусловливает дополнительные требования к ее несущей способности. В некоторых случаях такую способность необходимо усиливать для придания конструкции достаточной устойчивости, обеспечивающей возможность возведения на этом основании планирующегося к строительству здания.

В целом порядок осуществления таких расчетов можно описать в виде алгоритма, состоящего из нескольких ключевых шагов. При этом проектирование должно вестись с учетом, что проектировщику необходимо тщательно следить не только за тем, чтобы все перечисленные этапы были произведены в ходе расчетов, но и за соблюдением их последовательности, поскольку нарушение одного из этих условий может привести к существенным ошибкам в проектировании. Такие ошибки, в свою очередь, повлекут за собой несоответствие фактических параметров спроектированного здания запланированным. Это потребует использования дополнительных дорогостоящих технологий, включая например, армирование.

Расчет внецентренно нагруженного фундамента должен начинаться с определения сил, действующих по периметру фундамента. Для удобства осуществления таких расчетов их обыкновенно приводят к конечному числу результирующих, которые отражают характер и интенсивность внешнего воздействия нагрузок на фундамент. При этом необходимо найти точки приложения результирующих сил к плоскости подошвы несущей строительной конструкции.

  1. Устройство грунтовых подушек

Грунтовые подушки устраивают в открытых котлованах для распределения давления от фундамента на больную площадь слабого грунта или для замены слабого грунта при небольшой его мощности. Перед устройством подушки планируют дно котлована и верхний слой грунта уплотняют до проектной плотности. Для устройства подушек используют местные пылевато-глинистые, песчаные и песчано-гравелистые грунты оптимальной влажности, а также гравий, щебень и шлаки. Допускается использовать грунты с содержанием органических включений и комьев мерзлого грунта размером до 10 см при общем содержании их не более 15%.

При устройстве искусственных оснований в виде грунтовых подушек применяют послойное уплотнение грунта. Толщину отсыпаемых слоев принимают в зависимости от оборудования, применяемого для уплотнения.

Грунтовые подушки устраиваются толщиной 1,5—5 м. В практике имеются случаи устройства подушек толщиной 10—12 м. Чаще всего грунтовые подушки применяют в просадочных грунтах. Просадочный грунт заменяют местным грунтом, укладываемым с заданной плотностью.

При возведении подушек для создания сплошного водонепроницаемого экрана можно применять лессовидные глины и суглинки.

Дренирующие материалы (песок, щебень, шлак) для устройства подушек допускается применять в непросадочных грунтах, а также в грунтовых условиях I типа по просадочности.

При устройстве грунтовых подушек с целью ликвидации просадочных свойств основания плотность сухого грунта должна быть не менее 1,6 т/м3. Грунтовые подушки устраивают по всей площади котлована или под отдельными фундаментами.

Грунтоуплотняющие механизмы при устройстве подушек выбирают в зависимости от объема и сроков выполнения работ и вида применяемого материала подушки.

При больших объемах работ целесообразно применять трамбующие машины Д-1471 или тяжелые катки на пневмоколесном ходу. При небольших размерах подушек в плане применяют самоходные катки, тракторы и тяжелые трамбовки.

Схему и порядок производства работ по устройтсву подушки выбирают в зависимости от конструктивной формы здания в плане и типа грунтоуплотняющего механизма

В котлованах грунт уплотняют полосами поперек котлована на всю его ширину. Полосы перекрывают одна другую на 0,2—0,5 м.

Уплотнение грунта в подушках можно выполнять транспортными средствами, доставляющими грунт, для чего их движение необходимо организовать таким образом, чтобы уплотнение производилось равномерно.

Для исключения возможности промерзания грунта при устройстве подушки, весь процесс должен быть организован непрерывным потоком. Укладка грунта на ранее уплотненный промороженный    грунт    допускается при толщине слоя не более 0,4 м только в тех случаях, когда влажность его не превышает 0,9 влажности на границе раскатывания.

При использовании тяжелых трамбовок при устройстве подушек работы ведут в такой последовательности: после отрывки котлована тяжелыми трамбовками уплотняют дно котлована до отказа;

затем отсыпают такой слой грунта, чтобы он мог быть уплотнен данной тяжелой трамбовкой;

далее отсыпают такие же слои и уплотняют трамбовкой.

  1. Поверхностное и глубинное уплотнение грунтов

Уплотнение грунтов производится укаткой, трамбованием, вибрацией, виброударами, взрывами, статической нагрузкой от собственного веса грунта, а также от дополнительной пригрузки

При укатке на грунт передается наклонное давление, складывающееся из вертикального от собственного веса механизма и горизонтального, возникающего за счет тягового усилия. Наиболее эффективным для уплотнения грунта является наклонное давление, создаваемое перекатыванием колеса или барабана.

Трамбование грунта связано с ударами рабочего органа — трамбовки, поднятой на некоторую высоту, о грунт [9]. Уплотнение грунта происходит под воздействием передающейся на него ударной энергии и сопровождается перемещением частиц грунта в вертикальном и горизонтальном направлениях. При этом только часть ударной энергии расходуется на уплотнение, а остальная поглощается грунтом за счет его упругого сжатия.

При уплотнении вибрацией и виброударами на грунт передаются колебательные и ударные воздействия от рабочего органа в результате чего происходит более плотная укладка грунта и его уплотнение. Вибрационные и виброударные воздействия различаются между собой по частоте и амплитуде колебаний. С уменьшением частоты и увеличением амплитуды колебаний вибрационные воздействия переходят в виброударные, а машины соответственно называют вибрационными и виброударными.

При взрывах грунты уплотняются под воздействием энергии ударной волны и колебаний грунта, возникающих при взрыве взрывчатого вещества. При этом лишь небольшая часть энергии взрыва расходуется на уплотнение грунта, остальная часть идет на его разуплотнение, упругое сжатие и т.п.

Методы уплотнения грунтов подразделяются на поверхностные, когда уплотняющее воздействие прикладывается с поверхности грунта, и глубинные — при передаче уплотняющего воздействия по всей или по определенной глубине массива грунта.

К поверхностным методам относятся уплотнение грунтов укаткой, тяжелыми трамбовками, трамбующими машинами, виброкатками, виброплитами и вибротрамбовками, подводными взрывами, а также вытрамбовывание котлованов; к глубинным методам — пробивкой скважин (грунтовыми сваями), глубинными вибраторами, глубинными взрывами, статическими нагрузками от собственного веса, а также от дополнительной пригрузки, в том числе с песчаными, бумажно-пластиковыми и другими дренами.

В процессе уплотнения укаткой, трамбованием, вибрацией, виброударами и взрывами уплотняющие воздействия на грунты передаются по определенным циклам, в результате чего на грунт воздействуют циклические нагрузки, характеризующиеся последовательной сменой процессов нагрузки и разгрузки [9]. В соответствии с этим в уплотняемом грунте происходят обратимые (упругие) и необратимые (остаточные) деформации, последние и обеспечивают повышение степени плотности грунтов. При уплотнении грунтов статической нагрузкой от их собственного веса, а также от дополнительной пригрузки происходят в основном необратимые деформации.

При любом режиме уплотнения для каждого вида грунта и уплотняющего воздействия процесс накопления остаточных деформаций и, следовательно, повышение степени плотности грунта могут происходить только до определенного предела после передачи на него определенной работы. Дальнейшее увеличение работы без изменения режима уплотнения сопровождается в основном обратимыми деформациями и не приводит практически к повышению степени плотности грунта

  1. Закрепление грунтов: цементация и силикатизация

Закрепление грунтов заключается в усилении связей между их частицами способами цементации, битумизации, силикатизации, смолизации, воздействием электрического тока, обжигом и т. д. на глубину до 15 м. Для повышения несущей способности грунтов в основании фундаментов, а также для прекращения или уменьшения фильтрации воды под гидротехническими напорными сооружениями применяют цементацию. Сущность этого способа заключается в нагнетании в поры укрепляемого грунта цементного раствора, при отвердевании которого значительно увеличивается прочность и водонепроницаемость основания. Способ цементации применим для закрепления грунтов, размеры пор которых обеспечивают свободное проникание частиц цемента. Наибольший эффект получается при цементации крупнообломочных грунтов, крупных и средней крупности песков с коэффициентом фильтрации от 80 до 200 м/сут. Цементация трудноосуществима в мелких песках и совсем непригодна для укрепления илистых, супесчаных, суглинистых и глинистых грунтов. Трещиноватые скальные грунты можно цементировать только при ширине трещин в них более 0,1 мм. Для цементации применяют цементные или цементно-песчаные растворы состава от 1:1 до 1:3. Раствор нагнетают под давлением 0,3—1 МПа растворонасосами или пневмонагнетателями через предварительно заглубленные трубки-инъекторы диаметром 33—60 мм, имеющие в нижней части отверстия диаметром 4—6 мм. Радиус действия инъекторов ориентировочно принимают для трещиноватых скальных грунтов 1,2—1,5 м, для крупнообломочных грунтов 0,75—1 м, для крупных песков 0,5—0,75 м, для песков средней крупности 0,3—0,5 м. Расход раствора составляет 20—40% объема закрепляемого грунта. Упрочнение грунта наступает после схватывания цемента. Закрепленный песчаный грунт вблизи инъектора на 28-е сут имеет предел прочности на сжатие 2—3 МПа. С изменением радиуса закрепления от 0,4 до 1,2 м предел прочности на сжатие зацементированного песка в крайних слоях меняется от 2 до 0,9 МПа. Закрепление грунтов битумом называют битумизацией. Ее применяют для укрепления песков и сильно трещиноватых скальных грунтов. Битумизацию производят нагнетанием в грунт расплавленного битума или холодной битумной эмульсии. Первый способ применим для закрепления сильно трещиноватых скальных грунтов, так как грунт с мелкими порами почти непроницаем для вязкого битума. Разогретый до 200—220 °С битум нагнетают в грунт инъектором под давлением 2,5—3 МПа. Холодная битумная эмульсия по сравнению с разогретым битумом обладает большей способностью к прониканию в грунт, что позволяет использовать ее для закрепления песков. Для этого приготовляют битумную эмульсию, состоящую из 60% битума, расщепленного в воде с помощью эмульгатора на мельчайшие взвешенные частицы, и 40% воды. Полученную эмульсию нагнетают в грунт. Заполняя поры, битумная эмульсия связывает и закрепляет грунт. Так как суспензия из взвешенных в воде частиц цемента не может проникнуть в грунты с мелкими порами, для закрепления таких грунтов применяют силикатизацию. Известны два способа силикатизации грунтов—двухрастворный и однорастворный. Сущность двухрастворной силикатизации заключается в образовании связывающего частицы грунта вещества—геля кремниевой кислоты—в результате реакции между растворами силиката натрия (жидкого стекла) и хлористого кальция. Эта реакция подобна процессу образования песчаников в природных условиях, но происходит значительно быстрее. Наиболее интенсивно реакция протекает в течение первых двух часов нагнетания раствора в грунт, а затем замедляется. Через 10 сут прочность закрепленного грунта достигает 70—80% той, которая бывает после завершения процесса—примерно через 90 сут. Двухрастворную силикатизацию применяют для укрепления крупных и средней крупности песков с коэффициентом фильтрации от 2 до 80 м/сут. Радиус закрепления таких песков в зависимости от значения коэффициента фильтрации изменяется от 0,3 до 1 м, а предел прочности закрепленных грунтов на сжатие через 28 сут составляет 1,5—5 МПа. Однорастворную силикатизацию используют для закрепления мелких песков и плывунов с коэффициентом фильтрации 0,3—5 м/сут. Радиус закрепления таких грунтов 0,3—1 м, а предел прочности на сжатие закрепленных грунтов 0,4—0,5 МПа. Для упрочнения грунтов используют один раствор, состоящий из жидкого стекла и фосфорной кислоты.

Вопросы №2

  1. Закрепление грунтов: смолизация, глинизация и битумизация

 Смолизация — нагнетание водного раствора карбамидной смолы с добавкой соляной кислоты,щавелевой кислоты или хлористого аммония. Применяется для закрепления, повышения прочности иводонепроницаемости мелкозернистых песчаных грунтов.

  Глинизация служит для уменьшения фильтрационной способности трещиноватых скальных,кавернозных пород и гравелистых грунтов. При этом способе в трещины породы нагнетается под большимдавлением глинистая суспензия с добавкой небольшой дозы коагулянта.

битумизация. Её назначение — заделка наиболее крупных каверн, не поддающихсяцементации из-за большой скорости грунтового потока. Нагнетание горячего битума в полости и трещиныкавернозных пород производится через пробуренные скважины, оборудованные инъекторами. При холоднойбитумизации в грунт нагнетают тонкодисперсную битумную эмульсию. Способ применяется для оченьтонких трещин в скальных грунтах и закрепления песчаных грунтов.

  1. Закрепление грунтов: электрохимия и термическая обработка

   Для глинистых грунтов, где нагнетание растворов невозможно, используется электрохимическийспособ закрепления, основанный на пропускании постоянного электрического тока через грунт, в которыйвводится раствор хлористого кальция, в результате чего грунт обезвоживается и уплотняется. Реакцииобмена, происходящие при этом в приэлектродной зоне, также способствуют уплотнению и закреплениюгрунта. Электрохимическое закрепление подразделяется на электроосушение, электроуплотнение иэлектрозакрепление.

         Для упрочнения просадочных лёссовых грунтов применяется термическое закрепление,осуществляемое обжигом закрепляемых грунтов газообразными продуктами горения топлива, имеющимитемпературу 700—1000°С. Наиболее эффективным является сжигание топлива непосредственно в толщезакрепляемого грунта (рис.2). Стабилизация и закрепление неустойчивых водоносных грунтов достигаетсяискусственным замораживанием грунтов (См. Замораживание грунтов).

  1. Основные размеры котлованов. Обеспечение устойчивости стенок котлованов

Горизонтальные и вертикальные размеры котлованов 

определяются с учетом их назначения, применяемых механизмов и технологии их сооружения. При определении размеров необходимо установить следую-

шие размеры котлована: поперечное сечение, его глубину, заложение

откосов боковых поверхностей, создание боковых берм, наличие и 

размеры уступов в поперечном сечении.

Размеры котлованов определяются не только в зависимости от 

геометрических размеров необходимых фундаментов, но также с учетом

способа производства работ, необходимого пространства для их 

выполнения, места для размещения машин и механизмов, с учетом 

пространства, занимаемого конструкциями крепления стенок котлована и 

размещения при необходимости установок для осуществления водопони-

жения. Ширина пространства, необходимого для производства работ,

обычно определяется технологическими условиями.

В качестве пространства, необходимого для выполнения работ,

является:

в котловане с облицованными или необпицованными стенками - 

расстояние между стенкой или подошвой откоса и внешней стороной

сооружаемого фундамента (например, стенки, возводимой в опалубке).

в котлованах с подпертыми стенками ~ расстояние между внешней

деталью стенок и сооружаемым фундаментом.

Минимально необходимая рабочая ширина котлована может быть

уменьшена в исключительных случаях.

Ширина траншеи по дну определяется как сумма ширины 

сооружаемого фундамента с учетом установки опалубки к удвоенной 

минимально необходимой рабочей ширины обшивки или стенок котлована. 

В случае появления каких-либо дополнительных условий и размеров

ширина котлована должна быть увеличена.

В зависимости от глубины котлована, грунтовых условий и УГВ, котлованы устраивают либо с естественными откосами либо применяют те или иные методы их крепления.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]