
- •Лекция 1 Введение
- •Классификация приборов
- •Общий принцип измерения физичеcких величин
- •Основные параметры приборов
- •Приборы для измерения механических величин
- •Приборы для измерения линейных размеров
- •Угломерные приборы
- •Приборы для измерения объема тел
- •Часы и частотомеры
- •Измерение линейных и угловых скоростей
- •Акустические приборы
- •Приемники звука
- •Приборы звукозаписи и звуковоспроизведения
- •Приборы для измерения сил. Весы
- •Основы электрических цепей и электронных приборов Единица количества электричества
- •Электрическое поле
- •Источники электрического тока
- •Скорость электрического тока
- •Направление электрического тока
- •Величина тока
- •Электрическое напряжение
- •Электрическое сопротивление
- •Механизм электрической проводимости полупроводников
- •Закон Фарадея как два различных явления
- •Полупроводниковые диоды Полупроводники. P-n переход
- •Вольт-амперные характеристики диодов
- •Биполярные транзисторы
- •Как усиливает биполярный транзистор
- •Особенности биполярных транзисторов
- •Температурная нестабильность
- •Коэффициент усиления
- •Коэффициент усиления
- •Полярность напряжений питания
- •Графические характеристики биполярного транзистора Входные статические характеристики в схеме с оэ
- •Для чего используются входные статические характеристики
- •Анализ электронных схем Почему используются синусоиды?
- •Постоянная и переменная составляющие
- •Полярность напряжений и токов в электронных схемах
- •Биполярный транзистор в роли линейного усилителя Общие сведения
- •Транзистор в роли усилителя
- •Рабочая точка транзистора
- •Почему важен выбор рабочей точки транзистора
Источники электрического тока
Источниками электрическою тока являются батареи, аккумуляторы, динамомашины, различные виды генераторов и т. д. Они производят электроэнергию за счет какого-нибудь другого вида энергии, например, химической, механической, тепловой и пр. Следовательно, и в случаях с источниками электрического тока закон сохранения энергии остается в силе.
Каждый источник тока имеет свойство при замыкании цепи создавать в проводниках электрическое поле, которое с определенной силой действует на свободные электроны. Поэтому говорят, что каждый источник тока имеет определенную электродвижущую силу (ЭДС).
Источники электрического тока электронов не производят, но созданное ими электрическое поле приводит в движение свободные электроны, находящиеся в самих проводниках. В этом отношении любой источник тока можно сравнить с насосом, который приводит в движение воду в замкнутой системе труб (рис. 3.3б). Насос передает энергию турбине так же, как батарейка передает энергию лампочке. Очевидно, в любой неразветвленной системе количество воды, протекающей в толстых и тонких трубах за единицу времени, одно и то же, только по тонким трубам частицы воды движутся с большей
Рис.3.3.
скоростью. По аналогии можно сказать, что величина тока в неразветвленной электрической цепи везде одна та же, только в проводниках большего диаметра электроны движутся медленнее, чем в более тонких проводниках.
Скорость электрического тока
Электрическое поле распространяется по проводам со скоростью 300 000 километров в секунду. Эта скорость так велика, что за одну секунду поле может обойти земной шар около восьми раз!
Скорость направленного движения электронов в проводниках намного меньше и зависит от плотности тока.
По накаленной нити электрической лампочки электроны движутся со скоростью 1—2 сантиметра в секунду, в то время как в шнурах и кабелях эта скорость не превышает 2—3 миллиметров в секунду. Здесь может возникнуть вопрос: почему же говорят, что скорость электрического тока огромна?
Для того, чтобы разобраться в этом, представим себе несколько десятков кубиков, плотно сложенных по прямой линии на гладкой поверхности. Если толкнем первый кубик, то толчок дойдет до последнего кубика почти моментально, однако, скорость каждого кубика в отдельности не будет очень большой. Таким же образом при замыкании электрической цепи электрическое поле распространяется по проводнику с огромной скоростью и почти одновременно приводит в движение как близкие, так и дальние электроны. Вот почему и принято считать, что электрический ток распространяется по проводникам со скоростью около 300 000 километров в секунду.
Направление электрического тока
Мы уже выяснили, что в металлах электрический ток обусловлен только одним видом носителей зарядов – электронами. Однако в электролитах электрический ток обусловлен как электронами, так и положительными ионами. Подобную картину наблюдаем
Рис. 3.4.
и в полупроводниках, где электрический ток обусловлен двумя видами заряженных частиц: электронами и дырками (дырки имеют свойства положительно заряженных частиц, т. к. представляют собой места, в которых отсутствуют электроны). На рис. 3.4а условно показан полупроводник, по которому не течет ток. Видно, что электроны и дырки движутся хаотично в различных направлениях вследствие теплового колебания. Если же полупроводник соединен с источником тока, то возникает электрическое поле, и дырки начинают двигаться в направлении поля, а электроны – навстречу полю (рис. 3.4б).
Еще в прошлом веке было принято под направлением электрического тока понимать направление движения положительно заряженных зарядов (тогда еще не знали, что ток в металлах обусловлен только электронами). По традиции это правило сохранилось и до сих пор. Поэтому согласно этому правилу, направление тока в металлах противоположно направлению движения электронов. Следовательно, ток во внешней цепи течет в направлении от положительного полюса к отрицательному.