- •Індивідуальні домашні завдання
- •4. Група менеджерів, що складається з чоловік займає місця в одному ряду конференц-зали у випадковому порядку. Яка ймовірність того, що:
- •1) Визначених менеджерів виявляться поруч;
- •2) Визначених менеджерів не виявляться поруч.
- •6. 1). На відрізок одиничної довжини навмання ставиться точка. Обчислити ймовірність того, що відстань від точки до кінців відрізка перевищує величину .
- •2). На відрізку одиничної довжини навмання взято дві точки. Обчислити ймовірність того, що відстань між ними менше .
- •Теореми додавання і множення ймовірностей
- •7. Два клієнти зайшли до магазину. Імовірність того, що перший клієнт забажає зробити покупку дорівнює , другий –. Знайти ймовірність того, що забажають зробити покупку:
- •8. Три клієнти звернулися до кредитного відділу банку . Імовірність того, що перший клієнт одержить кредит дорівнює , другий –, третій –. Знайти ймовірності таких подій:
- •1) Кредит одержать: а) один клієнт; б) два клієнти; в) три клієнти;
- •2) Жоден із клієнтів не одержить кредиту.
- •Формула повної ймовірності. Формула Байєса
- •Модуль 2 «Повторні незалежні випробування.
- •Модуль 3 «Одновимірні випадкові величини»
- •1. Дискретні випадкові величини
- •2. Неперервні випадкові величини
- •Модуль 4
- •3. Граничні теореми теорії ймовірностей. Закон великих чисел
- •Модуль 5 «Елементи математичної статистики» Завдання 1
- •Завдання 2
Міністерство освіти і науки, молоді та спорту України
Чернігівський державний інститут економіки і управління
Кафедра вищої математики
Індивідуальні домашні завдання
з дисципліни
«ВИЩА МАТЕМАТИКА»
(теорія ймовірностей та математична статистика)
для студентів ІІ курсу
спеціальностей «Будівництво» та «Геодезія, картографія, землеустрій»
Укладач:
ст. викладач Вінніченко Н.В.
Чернігів-2013
МОДУЛЬ 1
«Елементи комбінаторики. Основні поняття теорії ймовірностей»
Класичне означення ймовірності
У задачах 1-5 знайти ймовірності подій, користуючись формулами комбінаторики.
1. Кидають два гральних кубики. Обчислити ймовірність того, що а) сума очок не перевищить n; б) добуток очок не перевищить n; в) добуток очок поділиться на n.
|
№ варіанту |
n |
|
1 |
3 |
|
2 |
4 |
|
3 |
5 |
|
4 |
6 |
|
5 |
7 |
|
6 |
8 |
|
7 |
9 |
|
8 |
10 |
|
9 |
11 |
|
10 |
12 |
|
11 |
5 |
|
12 |
6 |
|
№ варіанту |
n |
|
13 |
7 |
|
14 |
8 |
|
15 |
9 |
|
16 |
10 |
|
17 |
11 |
|
18 |
12 |
|
19 |
13 |
|
20 |
14 |
|
21 |
15 |
|
22 |
16 |
|
23 |
17 |
|
24 |
18 |
|
25 |
19 |
2. Ліфт із n пасажирами зупиняється на k поверхах. Чому дорівнює ймовірність того, що а) усі пасажири вийдуть на одному поверсі; б) усі вийдуть на різних поверхах; в) принаймні двоє вийдуть на одному поверсі.
|
№ варіанту |
k |
n |
|
1 |
6 |
4 |
|
2 |
7 |
4 |
|
3 |
8 |
5 |
|
4 |
9 |
5 |
|
5 |
10 |
6 |
|
6 |
11 |
4 |
|
7 |
12 |
4 |
|
8 |
13 |
3 |
|
9 |
14 |
3 |
|
10 |
13 |
4 |
|
11 |
12 |
3 |
|
12 |
11 |
3 |
|
13 |
10 |
4 |
|
№ варіанту |
k |
n |
|
14 |
9 |
4 |
|
15 |
8 |
3 |
|
16 |
7 |
3 |
|
17 |
6 |
4 |
|
18 |
7 |
4 |
|
19 |
8 |
5 |
|
20 |
9 |
5 |
|
21 |
10 |
6 |
|
22 |
11 |
4 |
|
23 |
12 |
4 |
|
24 |
13 |
3 |
|
25 |
14 |
3 |
3. Слово складене з карток на яких написана одна буква. Картки змішують і виймають без повернення по одній. Знайти ймовірність того, що картки з буквами виймаються в порядку знаходження букв заданого слова.
|
№ варіанту |
|
|
|
1 |
подія |
математика |
|
2 |
теорія |
статистика |
|
3 |
номер |
розподіл |
|
4 |
книга |
парабола |
|
5 |
кіно |
діаграма |
|
6 |
гіпербола |
група |
|
7 |
схема |
кукурудза |
|
8 |
матч |
задача |
|
9 |
гра |
щільність |
|
10 |
воля |
спортсмен |
|
11 |
пам’ять |
програма |
|
12 |
магніт |
програміст |
|
№ варіанту |
|
|
|
13 |
інтеграл |
статистика |
|
14 |
умова |
інформатика |
|
15 |
алгоритм |
сердечник |
|
16 |
блок |
програмування |
|
17 |
схема |
випадковість |
|
18 |
операція |
імовірність |
|
19 |
буква |
підпрограма |
|
20 |
білий |
процедура |
|
21 |
куля |
присвоювання |
|
22 |
п’ять |
процесор |
|
23 |
час |
пристрій |
|
24 |
один |
обчислити |
|
25 |
чорний |
калькулятор |
