
Атомное ядро
Состав и характеристика атомного ядра.
Ядро простейшего атома - атома водорода - состоит из одной элементарной частицы, называемой протоном. Ядра всех остальных атомов состоят из двух видов элементарных частиц - протонов и нейтронов. Эти частицы носят название нуклонов.
Протон. Протоно (p) обладает зарядом +eи массой
mp= 938,28 МэВ
Для сравнения укажем, что масса электрона равна
me= 0,511 МэВ
Из сопоставления и следует, что mp= 1836me
Протон имеет спин, равный половине (s=
),
и собственный магнитный момент
где
- единица магнитного момента, называемая ядерным магнетоном. Из сравнения масс протона и электрона вытекает, что μяв 1836 раз меньше магнетона Бора μб. Следовательно, собственный магнитный момент протона примерно в 660 раз меньше, чем магнитный момент электрона.
Нейтрон. Нейтрон (n) был открыт в 1932 г. английским физиком
Д. Чедвиком. Электрический заряд этой частицы равен нулю, а масса
mn = 939,57МэВ
очень близка к массе протона. Разность масс нейтрона и протона (mn –mp)
составляет 1,3 МэВ, т.е. 2,5 me.
Нейтрон обладает спином, равным половине
(s=
)
и (несмотря на отсутствие электрического
заряда) собственным магнитным моментом
μn = - 1,91μя
(знак минус указывает на то, что направления собственных механического и магнитного моментов противоположны). Объяснение этого удивительного факта будет дано позже.
Отметим, что отношение экспериментальных значений μpи μnс большой степенью точности равно - 3/2 . Это было замечено лишь после того, как такое значение было получено теоретически.
В свободном состоянии нейтрон нестабилен
(радиоактивен) – он самопроизвольно
распадается, превращаясь в протон и
испуская электрон (e-)
и еще одну частицу, называемую антинейтрино.
Период полураспада (т.е. время, за которое
распадается половина первоначального
количества нейтронов) равен примерно
12 мин. Схему распада можно написать
следующим образом:
Масса покоя антинейтрино равна нулю. Масса нейтрона больше массы протона на 2,5me. Следовательно, масса нейтрона превышает суммарную массу частиц, фигурирующих в правой части уравнения на 1,5me, т.е. на 0,77 МэВ. Эта энергия выделяется при распаде нейтрона в виде кинетической энергии образующихся частиц.
Характеристики атомного ядра. Одной из важнейших характеристик атомного ядра является зарядовое числоZ. Оно равно количеству протонов, входящих в состав ядра, и определяет его заряд, который равен +Ze. ЧислоZопределяет порядковый номер химического элемента в периодической таблице Менделеева. Поэтому его также называют атомным номером ядра.
Число нуклонов (т.е. суммарное число протонов и нейтронов) в ядре обозначается буквой А и называется массовым числом ядра. Число нейтронов в ядре равно N=A–Z.
Для обозначения ядер применяется символ
где под Xподразумевается химический символ
данного элемента. Слева вверху ставится
массовое число, слева внизу – атомный
номер (последний значок часто опускают).
Иногда массовое число пишут не слева,
а справа от символа химического элемента
Ядра с одинаковым Z, но разными А называютсяизотопами. Большинство химических элементов имеет по несколько стабильных изотопов. Так, например, у кислорода имеется три стабильных изотопа:
,
у олова - десять, и т.д.
Водород имеет три изотопа:
– обычный водород, или протий (Z=1,
N=0),
– тяжелый водород, или дейтерий
(Z=1, N=1),
– тритий (Z=1,
N=2).
Протий и дейтерий стабильны, тритий радиоактивен.
Ядра с
одинаковым массовым числом А называются
изобарами.
В качестве примера
можно привестии
.
Ядра с одинако-
вым числом нейтроновN
= A – Z носят названиеизотонов
(
,
).Наконец,
существуют радиоактивные ядра с
одинаковымиZ и
A,
отличающиеся периодом полураспада.
Они называютсяизомерами. Напри-
мер,
имеются два изомера ядра
,
у одного из них период полу-распада
равен 18 мин, у другого – 4,4
часа.
Известно около 1500 ядер, различающихся либо Z, либо А, либо и тем и другим. Примерно 1/5 часть этих ядер устойчивы, остальные радиоактивны. Многие ядра были получены искусственным путем с помощью ядерных реакций.
В природе встречаются элементы с атомным номером Z от1до 92, исключая технеций (Tc, Z = 43) и прометий (Pm, Z = 61). Плутоний (Pu, Z = 94) после получения его искусственным путем был обнаружен в ничтожных количествах в природном минерале – смоляной обманке. Остальные трансурановые (т.е. заурановые) элементы (сZ от 93 до 107) были получены искусственным путем посредством различных ядерных реакций.
Трансурановые элементы кюрий (96 Cm), эйнштейний (99 Es),фермий (100 Fm) и менделевий (101 Md) получили название в честь выдающихся ученыхII. и М. Кюри, А. Эйнштейна, З. Ферми и Д.И. Менделеева. Лоуренсий (103 Lw) назван в честь изобретателя циклотрона Э. Лоуренса. Курчатовий (104 Ku) получил свое название в честь выдающегося физика И.В. Курчатова.
Некоторые трансурановые элементы, в том числе курчатовий и элементы с номерами 106 и 107, были получены в Лаборатории ядерных реакций Объединенного института ядерных исследований в Дубне ученым
Н.Н. Флеровым и его сотрудниками.
Размеры ядер. В первом приближении ядро можно считать шаром, радиус которого довольно точно определяется формулой
(ферми – название применяемой в ядерной физике единицы длины, равной
10-13см). Из формулы следует, что объем ядра пропорционален числу нуклонов в ядре. Таким образом, плотность вещества во всех ядрах примерно одинакова.
Спин ядра. Спины нуклонов складываются в результирующий спин ядра. Спин нуклона равен 1/2. Поэтому квантовое число спина ядра будет полуцелым при нечетном числе нуклонов А и целым или нулем при четном А. Спины ядерJне превышают нескольких единиц. Это указывает на то, что спины большинства нуклонов в ядре взаимно компенсируют друг друга, располагаясь антипараллельно. У всех четно-четных ядер (т.е. ядро с четным числом протонов и четным числом нейтронов) спин равен нулю.
Механический момент ядра MJскладывается с моментом электронной
оболочки
в полный момент импульса атомаMF,
который определяется квантовым числом
F.
Взаимодействие магнитных моментов
электронов и ядра приводит к тому, что
состояния атома, соответствующие
различным взаимным ориентациям MJ
и
(т.е. различнымF), имеют
немного отличающуюся энергию.
Взаимодействием моментов μL
иμSобусловливается тонкая структура
спектров. ВзаимодействиемμJ
и
определяется сверхтонкая структура
атомных спектров. Расщепление
спектральных линий, соответствующее
сверхтонкой структуре, настолько мало
(порядка нескольких сотых ангстрема),
что может наблюдаться лишь с помощью
приборов самой высокой разрешающей
силы.