
- •Министерство образования Республики Беларусь
- •Предисловие
- •1.Структура рынка средств производства при планово распределительной экономике и в переходный период. Формы реализации средств производства
- •1.1. Структура рынка средств производства
- •1.2. Социально-экономическое развитие Республики Беларусь в переходный период (1990-2000гг.)
- •1.3. Развитие реального сектора экономики
- •2. Технологический прогресс – основа развития общественного производства
- •2.1. Этапы технологического развития общества
- •2.2. Особенности технологического развития общества в современных условиях.
- •2.3. Основные направления научно-технологического развития на современном этапе
- •2.4. Перспективы научно-технологического развития
- •3. Классификация технологических процессов, технологичность изделий
- •3.1. Классификация технологических процессов
- •3.2. Технологичность изделий
- •4. Организация обеспечения промышленных предприятий качественным сырьем и комплектующими
- •4.3. Организация снабжения цехов материалами
- •5.1. Формирование системы качества в Республике Беларусь
- •5.2. Качество – всемирное поле конкуренции
- •5.3. Международная система управления качеством
- •6. Автоматизация производства
- •6.1 Пути автоматизации
- •6.2 Оборудование для автоматизации производств
- •6.3 Промышленные роботы
- •6.4 Автоматизированные линии и производства
- •8.Нормирование производственных запасов. Управление запасами на предприятиях
- •8.1. Виды запасов
- •8.2. Методика нормирования производственных запасов
- •8.3. Оптимизация запасов
- •8.4. Сверхнормативные и несанкционированные запасы
- •9. Организационные структуры менеджмента в промышленности
- •9.1. Сущность и общая характеристика организационных структур
- •9.2 Выбор структуры управления.
- •10. Технологические системы как экономические объекты
- •10.1 Структура технологической системы
- •10.2 Классификация технологических систем
- •11. Стандартизация товарной продукции
- •11.1. Понятие стандартизации
- •11.2. Указатели стандартов
- •11.3.Обозначение стандартов
- •12. Технология конструкционных материалов
- •12.1. Кристаллическое строение металлов Все металлы – тела кристаллические. Кристаллы хаотично ориентированы и называются зернами.
- •Дефекты подразделяются на:
- •12.3 Химико-термическая обработка стали.
- •12.4 Цветные металлы
- •12.4.1 Титан.
- •12.4.2Алюминий и его сплавы.
- •13. Технология получения и применение изделий из композиционных материалов 13.1 Свойства композиционных материалов
- •13.2. Область применения полимерных композиционных материалов.
- •13.3. Характеристики компонентов, входящих в состав полимерных км
- •13.4. Технология изготовления изделий из композиционных материалов.
- •14. Механическая обработка. Технико-экономические параметры технологических процессов механической обработки.
- •14.1 Сущность процесса механической обработки.
- •14.2. Технико-экономический анализ технологического процесса механической обработки
- •1. Штучная себестоимость изготовления одной детали.
- •2. Себестоимость заданной партии деталей.
- •15. Технологические процессы получения заготовок методами литья
- •15.1 Сущность процессов литья.
- •15.2. Технологические процессы получения отливок в разовые песчано-глинистые формы
- •15.3. Литье в многоразовые формы.
- •15.4 Литье по выплавляемым моделям
- •16. Технология пластической переработки металлов
- •16.1 Механизм пластической деформации металлов
- •16.2 Прокатка
- •16.3. Штамповка
- •16.4. Ковка
- •16.5. Волочение
- •17. Элионные, электрофизические и электрохимические методы обработки материалов
- •17.2 Плазменная обработка.
- •17.3 Электроэррозионные методы обработки.
- •17.4 Электрохимические методы обработки.
- •17.5 Анодно-механическая обработка.
- •17.6 Химические методы размерной обработки деталей.
- •18. Технология получения изделий методами порошковой металлургии
- •19. Основы мембранных технологий
- •19.2. Основные разновидности мембранных процессов и их характеристика
- •20. Технология сварки и резки металлов
- •20.1. Электродуговая сварка и резка металлов
- •20.2. Газовая сварка и резка металлов
- •20.3. Холодная сварка
- •20.4. Ультразвуковая сварка давлением
- •20.5. Электронно-лучевая сварка
- •20.6. Плазменно-дуговая сварка
- •20.7. Диффузная сварка
- •21. Неорганическое стекло
- •21.1 Свойства и получение
- •21.2. Основные виды стеклянных изделий
- •22. Технология получения каучука и резины
- •22.1 Свойства и получение
- •22.2. Технология каучука и резины
- •22.3. Резины общего назначения
- •23. Основы технологических процессов электроники и микроэлектроники
- •23.1. Технология изготовления интегральных микросхем
- •23.2. Полупроводниковые интегральные схемы
- •23.3. Фотолитография в микроэлектронике
- •23.4. Нанесение тонких пленок в вакууме
- •23.5. Технология изготовления печатных плат (пп)
- •24. Технология применения лазера в промышленности
- •24.1 Физические основы работы лазера
- •24.2. Принцип работы лазера
- •24.3. Когерентный свет
- •24.5 Лазерная сварка
- •Голографическая интерферометрия – метод неразрушающего контроля
- •25.Технология переработки топлив
- •25.1 Основные виды и методы переработки топлив
- •25.2. Методы переработки нефти
- •26. Технология сборочного производства
- •26.1 Типы сборочного производства
- •26.2 Виды сборочных соединений
- •27. Техника безопасности в производстве
- •27.1.Теоретические остовы безопасности жизнедеятельности
- •27.2. Понятие риска и безопасности жизнедеятельности
- •27.3. Формирование опасностей в производственной среде. Технические методы и средства защиты человека на производстве1
- •27.4. Взрывоопасность
- •27.5. Пожароопасность
- •27.6. Электроопасность
- •27.7. Опасности автоматизированных процессов
- •27.8.Организации и управление охраной труда на предприятии
- •27.9 Обеспечение безопасности технологических процессов
- •Оглавление
22. Технология получения каучука и резины
22.1 Свойства и получение
Резиной
называется продукт специальной обработки
(вулканизации) смеси каучука и серы с
различными добавками. Резина способна
к очень большим деформациям (относительное
удлинение достигает 1000%), которые почти
полностью обратимы. Модуль упругости
лежит в пределах 1-10 МПа. Особенностью
резины является ее малая сжимаемость.
Другой особенностью резины является
релаксационный характер деформации.
При нормативной температуре время
релаксации может составлять
с
и более.
При работе резиновых изделий в условиях многократных механических напряжений часть энергии, воспринимаемой изделием, теряется на внутреннее трение, которое преобразуется в тепло. При эксплуатации толстостенных изделий (например, шин) нарастание температуры изделия приводит к снижению его работоспособности.
Основой всякой резины служит каучук натуральный (НК) или синтетический (СК), который и определяет основные свойства резинового материала. Для улучшения физико-механических свойств каучуков вводятся различные добавки.
1. Вулканизирующие вещества (агенты) участвуют в образовании пространственно-сетчатой структуры вулканизатора: в качестве таких веществ применяют серу и селен. Ускорителями процесса вулканизации являются полисульфиды, оксиды свинца, магния и другие. Они влияют как на режим вулканизации, так и на физико-механические свойства вулканизаторов.
2. Противостарители (антиоксиданты) замедляют процесс старения резины, который ведет к ухудшению ее эксплуатационных свойств. Существуют противостарители химического и физического действия. Действие первых заключается в том, что они разрушают образующиеся перекиси каучука. Физические противостарители (воск, парафин) образуют поверхностные защитные пленки.
3. Мягчители (пластификаторы) облегчают переработку резиновой смеси, увеличивают эластические свойства каучука, повышают морозостойкость резины. В качестве мягчителей вводят парафин, вазелин, стеариновую кислоту, битумы, дибутилфталат, растительные масла. Количество мягчителей составляет 8-30% массы каучука.
4. Наполнители по воздействию на каучук подразделяются на активные (усиливающие) и неактивные (инертные). Активные наполнители (углеродистая сажа и белая сажа – кремнекислота, оксид цинка и др.) повышают механические свойства резин: прочность, твердость, сопротивление старению. Неактивные наполнители ( мел, тальк, барит) вводятся для удешевления смеси. Часто в состав резиновой смеси вводят регенерат – продукт переработки старых резиновых изделий и отходов резинового производства.
5. Красители минеральные или органические вводят для окраски резин. Некоторые красящие вещества (белые, желтые, зеленые) поглощают коротковолновую часть солнечного спектра и этим защищают резину от светового старения.
В зависимости от количества вводимой серы получается различная частота сетки полимера. При введении 1-5% S образуется редкая сетка и резина получается высокоэластичной, мягкой. С увеличением процентного содержания серы сетчатая структура становится все более частой, резина более твердой, и при максимально возможном (примерно 30%) насыщении каучука серой образуется твердый материал, называемый эбонитом.
При
вулканизации изменяется молекулярная
структура полимера (образуется
пространственная сетка), что влечет за
собой изменение его физико-механических
свойств: резко возрастает прочность
при растяжении и эластичность каучука,
а пластичность почти полностью исчезает
(например, натуральный каучук имеетМПа,
после вулканизации
МПа;
увеличиваются твердость, сопротивление
износу. Многие каучуки растворимы в
растворителях, резины только набухают
в них и более стойки к химикатам. Резины
имеют более высокую теплостойкость
(НК размягчается при температуре 90оС, резина работает при температуре
свыше 100о С).
На изменение свойств резины влияет взаимодействие каучука с кислородом, поэтому при вулканизации одновременно происходят два процесса: структурирование под воздействием вулканизующего агента и деструкция под влиянием окисления и температуры. Преобладание того или иного процесса сказывается на свойствах вулканизата. Это особенно характерно для резин из НК. Для синтетических каучуков (СК) процесс вулканизации дополняется полимеризацией: под воздействием кислорода и температуры образуются межмолекулярные углеродистые связи, упрочняющие термостабильную структуру, что дает повышение прочности.
Термическая устойчивость вулканизата зависит от характера образующихся в процессе вулканизации связей. Наиболее прочные, а следовательно термоустойчивые связи – С-С-С, наименьшая прочность у полисульфидной связи – C-S-C.