
- •1. Материя и ее движение
- •2 Вещества и их изменение. Предмет неорганической химии
- •3. Закон сохранения массы. Основное содержание атомно-молекулярного учения
- •4. Эквивалент. Закон эквивалентности. Важнейшие классы и номенклатура неорганических веществ
- •5. Периодическая система элементов д.И. Менделеева
- •6. Теория химического строения
- •7. Общая характеристика p-, s-, d-элементов
- •8. Ковалентная связь. Метод валентных связей
- •9. Неполярная и полярная ковалентные связи
- •10. Многоцентровые связи
- •11. Ионная связь
- •12. Водородная связь
- •13. Превращение энергии при химических реакциях
- •14. Цепные реакции
- •15. Общие свойства неметаллов
- •16. Водород
- •17. Вода
- •18. Перекись водорода
- •19. Общая характеристика подгруппы галогенов
- •20. Хлор. Хлороводород и соляная кислота
- •21. Краткие сведения о фторе, броме и йоде
- •22. Общая характеристика подгруппы кислорода
- •23. Кислород и его свойства
- •24. Озон и его свойства
- •25. Сера и ее свойства
- •26. Сероводород и сульфиды
- •27. Свойства серной кислоты и ее практическое значение
- •28. Азот. Сигма– и пи-связи
- •29. Общая характеристика подгруппы азота
- •30. Аммиак
- •31. Соли аммония
- •32. Оксиды азота
- •33. Азотная кислота
- •34. Фосфор
- •35. Аллотропные модификации фосфора
- •36. Оксиды фосфора и фосфорные кислоты
- •37. Минеральные удобрения
- •38. Углерод и его свойства
- •39. Аллотропные модификации углерода
- •40. Оксиды углерода. Угольная кислота
- •41. Кремний и его свойства
- •42. Понятие коллоидных растворов
- •43. Соли кремниевой кислоты
- •44. Получение цемента и керамики
- •45. Физические свойства металлов
- •46. Химические свойства металлов
- •47. Металлы и сплавы в технике
- •48. Основные способы получения металлов
- •49. Коррозия металлов
- •50. Защита металлов от коррозии
- •51. Общая характеристика подгруппы лития
- •52. Натрий и калий
- •53. Едкие щелочи
- •54. Соли натрия и калия
- •55. Общая характеристика подгруппы бериллия
- •56. Кальций
- •57. Оксид и гидроксид кальция
- •58. Жесткость воды и способы ее устранения
- •59. Общая характеристика подгруппы бора
- •60. Алюминий. Применение алюминия и его сплавов
- •61. Оксид и гидроксид алюминия
- •62. Общая характеристика подгруппы хрома
- •63. Хром
- •64. Оксиды и гидроксиды хрома
- •65. Хроматы и дихроматы
- •66. Общая характеристика семейства железа
- •67. Железо
- •68. Соединения железа
- •69. Доменный процесс
- •70. Чугун и стали
- •71. Тяжелая вода
- •72. Соли соляной кислоты
9. Неполярная и полярная ковалентные связи
При помощи химической связи атомы элементов в составе веществ удерживаются друг возле друга. Тип химической связи зависит от распределения в молекуле электронной плотности.
Химическая связь – взаимное сцепление атомов в молекуле и кристаллической решетке под воздействием электрических сил притяжения между атомами. Атом на внешнем энергетическом уровне способен содержать от одного до восьми электронов. Валентные электроны – электроны предвнешнего, внешнего электронных слоев, участвующие в химической связи. Валентность – свойство атомов элемента образовывать химическую связь.
Ковалентная связь образуется за счет общих электронных пар, возникающих на внешних и предвнешних подуровнях связываемых атомов.
Общая электронная пара осуществляется через обменный или донорно-акцепторный механизм. Обменный механизм образования ковалентной связи – спаривание двух неспа-ренных электронов, принадлежащих различным атомам. Донорно-акцепторный механизм образования ковалетной связи – образование связи за счет пары электронов одного атома (донора) и вакантной орбитали другого атома (акцептора).
Есть две основные разновидности ковалентной связи: неполярная и полярная.
Ковалентная неполярная связь возникает между атомами неметалла одного химического элемента (O2, N2, Cl2) – электронное облако связи, образованное общей парой электронов, распределяется в пространстве симметрично по отношению к ядрам обоих атомов.
Ковалентная полярная связь возникает между атомами различных неметаллов (HCl, CO2, N2O) – электронное облако связи смещается к атому с большей электроотрицательностью.
Чем сильнее перекрываются электронные облака, тем прочнее ковалентная связь.
Электроотрицательность – способность атомов химического элемента оттягивать к себе общие электронные пары, участвующие в образовании химической связи.
Свойства ковалентной связи: 1) энергия; 2) длина; 3) насыщаемость; 4) направленность.
Длина связи – расстояние между ядрами атомов, образующих связь.
Энергия связи – количество энергии, необходимое для разрыва связи.
Насыщаемость – способность атомов образовывать определенное число ковалентных связей.
Направленность ковалентной связи – параметр, определяющий пространственную структуру молекул, их геометрию, форму.
Гибридизация – выравнивание орбиталей по форме и энергии. Существует несколько форм перекрывания электронных облаков с образованием ?-связей и ?-связей (?-связь намного прочнее ?-связи, ?-связь может быть только с ?-связью).
10. Многоцентровые связи
В процессе развития метода валентных связей выяснилось, что настоящие свойства молекулы оказываются промежуточными между теми, которые описывает соответствующая формула. Такие молекулы описывают набором из нескольких валентных схем (метод наложения валентных схем). В качестве примера рассматривается молекула метана СН4. В ней отдельные молекулярные орбитали взаимодействуют друг с другом. Это явление называется локализованной многоцентровой ковалентной связью. Эти взаимодействия слабые, поскольку степень перекрывания орбиталей невелика. Но молекулы с многократно перекрывающимися атомными орбиталями, ответственными за образование связей путем обобществления электронов тремя и более атомами, существуют (дибо-ран В2Н6). В этом соединении центральные атомы водорода соединены трехцентровыми связями, образовавшимися в результате перекрывания sp3-гибридных орбиталей двух атомов бора с 1s-атомной орбиталью атома водорода.
С точки зрения метода молекулярных орбиталей считается, что каждый электрон находится в поле всех ядер, но связь не обязательно образована парой электронов (Н2+ – 2 протона и 1 электрон).
Метод молекулярных орбиталей использует представление о молекулярной орбитали, описывая распределение электронной плотности в молекуле.
Молекулярные орбитали – волновые функции электрона в молекуле или другой многоатомной химической частице. Молекулярная орбиталь (МО) занята одним или двумя электронами. В области связывания состояние электрона описывает связывающая молекулярная орбиталь, в области разрыхления – разрыхляющая молекулярная орбиталь. Распределение электронов по молекулярным орбиталям происходит так же как и распределение электронов по атомным орбиталям в изолированном атоме. Молекулярные орбитали формируются при комбинациях атомных орбиталей. Их число, энергия и форма выводятся исходя из числа, энергии и формы орбиталей атомов – элементов молекулы.
Волновые функции, отвечающие молекулярным орбиталям в двухатомной молекуле, представляют в виде суммы и разности волновых функций, атомных орбиталей, умноженных на постоянные коэффициенты: ?(АВ) = c1?(A)±c2?(B). Это метод вычисления одноэлектронной волновой функции (молекулярные орбитали в приближении линейной комбинации атомных орбиталей).
Энергии связывающих орбиталей ниже энергии атомных орбиталей. Электроны связывающих молекулярных орбиталей находятся в пространстве между связываемыми атомами.
Энергии разрыхляющих орбиталей выше энергии исходных атомных орбиталей. Заселение разрыхляющих молекулярных орбиталей электронами ослабляет связь.