Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
90
Добавлен:
25.02.2016
Размер:
1.39 Mб
Скачать

Зонная диаграмма примесного полупроводника

Донорные уровни. Предположим, что в кристалле германия часть атомов германия замещена атомами пятивалентного мышьяка. Германий имеет решетку типа алмаза, в которой каждый атом окружен четырьмя ближайшими соседями, связанными с ним валентными силами (рис. а). Для установления связи с этими соседями атом мышьяка расходует четыре валентных электрона; пятый электрон в образовании связи не участвует. Он продолжает двигаться в поле атома мышьяка.

Вследствие ослабления поля радиус орбиты электрона увеличивается в 16 раз, а энергия связи его с атомом мышьяка уменьшается примерно в ε2 ≈ 256 раз, становясь равной Ед ≈ 0,01 эВ. При сообщении электрону такой энергии он отрывается от атома и приобретает способность свободно перемещаться в решетке германия, превращаясь, таким образом, в электрон проводимости (рис. б).

С точки зрения зонной теории этот процесс можно представить следующим образом. Между заполненной валентной зоной и свободной зоной проводимости располагаются энергетические уровни пятого электрона атомов мышьяка (рис. в). Эти уровни размещаются непо средственно у дна зоны проводимости, отстоя от нее на расстоянии Eg ≈ 0,01 эВ. При сообщении электронам таких примесных уровней энергии Eg они переходят в зону проводимости (рис. г). Образующиеся при этом положительные заряды («дырки») локализуются на неподвижных атомах мышьяка и в электропроводности не участвуют.

Зонная диаграмма примесного полупроводника

Акцепторные уровни. Предположим теперь, что в решетке германия часть атомов германия замещена атомами трехвалентного индия (рис. а). Для образования связей с четырьмя ближайшими соседями у атома индия не хватает одного электрона. Его можно «заимствовать» у атома германия. Для этого требуется энергия порядка Еа ≈ 0,01 эВ. Разорванная связь представляет собой дырку (рис. б), так как она отвечает образованию в валентной зоне германия вакантного состояния.

На рис. в показана зонная структура германия, содержащего примесь индия. Непосредственно у вершины валентной зоны на расстоянии Еа ≈ 0,01 эВ располагаются незаполненные уровни атомов индия. Близость этих уровней к валентной зоне приводит к тому, что уже при относительно невысоких температурах электроны из валентной зоны переходят на примесные уровни (рис. г). Связываясь с атомами индия, они теряют способность перемещаться в решетке германия и в проводимости не участвуют. Носителями заряда являются лишь дырки, возникающие в валентной зоне.

В любом полупроводниковом приборе имеется один или несколько электронно- дырочных переходов. Электронно-дырочный переход (или np-переход) –

это область контакта двух полупроводников с разными типами проводимости.

В полупроводнике n-типа основными носителями свободного заряда являются электроны. В полупроводнике p-типа основными носителями являются дырки .

При контакте двух полупроводников n- и p-типов начинается процесс диффузии: дырки из p-области переходят в n-область, а электроны, наоборот, из n-области в p-область. В результате в n-области вблизи зоны контакта уменьшается концентрация электронов и возникает положительно заряженный слой. В p- области уменьшается концентрация дырок и возникает отрицательно заряженный слой. Таким образом, на границе полупроводников образуется двойной электрический слой, электрическое поле которого препятствует процессу диффузии электронов и дырок навстречу друг другу.

Если полупроводник с np-переходом подключен к источнику тока так, что положительный полюс источника соединен с n-областью, а отрицательный – с p-областью, то напряженность поля в запирающем слое возрастает. Дырки в p-области и электроны в n-области будут смещаться от np-перехода, увеличивая тем самым концентрации неосновных носителей в запирающем

слое. Ток через np-переход практически не идет. Напряжение, поданное на np-переход в этом случае называют обратным. Весьма незначительный

обратный ток обусловлен только собственной проводимостью полупроводниковых материалов, т. е. наличием небольшой концентрации свободных электронов в p-области и дырок в n-области.

Если np-переход соединить с источником так, чтобы положительный полюс источника был соединен с p-областью, а отрицательный с n-областью, то напряженность электрического поля в запирающем слое будет уменьшаться, что облегчает переход основных носителей через контактный слой. Дырки из p-области и электроны из n-области, двигаясь навстречу друг другу, будут пересекать np-переход, создавая ток в прямом направлении. Сила тока через np-переход в этом случае будет возрастать при увеличении напряжения источника.

Полупроводниковые приборы - Электронные приборы, действие которых основано на электронных процессах в полупроводниках. Служат для генерирования, усиления и преобразования (по роду тока, частоте и т. д.) электрических колебаний (полупроводниковый диод, транзистор, тиристор), преобразования сигналов одного вида в другой (оптрон, фоторезистор, фотодиод, фототранзистор и др.), одних видов энергии в другие (термоэлемент, термоэлектрический генератор, солнечная батарея и др.), а также для преобразования изображений, измерения электрической и механической величины и др.

Все бесчисленное множество полупроводниковых приборов

можно условно разделить на две большие группы:

биполярные и униполярные.

P-n переход

P-n переход прямое включение

P-n переход обратное включение

ВАХ-п/п диода.

Соседние файлы в папке Презентации