
- •2 Заданы входная последовательность и импульсная характеристика дискретной системы Вычислить дискретную линейную свертку. Построить график свертки.
- •3 Решить разностное уравнение c начальным условием , где входная последовательность, отклик линейной стационарной дискретной системы.
- •1 Изобразить произвольную дискретную последовательность, записанную в виде суммы взвешенных и задержанных цифровых единичных отсчетов,
- •3 Решить разностное уравнение c начальным условием , где входная последовательность, отклик линейной стационарной дискретной системы.
- •1 Изобразить произвольную дискретную последовательность, записанную в виде суммы взвешенных и задержанных цифровых единичных отсчетов,
- •11 Вычислить двумерное дкп массива данных размером Восстановить исходный массив, выполнив двумерное обратное дискретное косинусное преобразование (одкп), если
- •3 Решить разностное уравнение c начальным условием , где входная последовательность, отклик линейной стационарной дискретной системы.
Контрольные задания и список литературы по дисциплине «Математические методы цифровой обработки сигналов»
Контрольное задание № 1
1
Изобразить произвольную дискретную
последовательность,
записанную в виде суммы взвешенных и
задержанных цифровых единичных отсчетов,
2
Заданы входная последовательность
и импульсная характеристика дискретной
системы
Вычислить дискретную линейную свертку.
Построить график свертки.
3
Решить разностное уравнение
c
начальным условием
,
где
входная последовательность,
отклик линейной стационарной дискретной
системы.
4
Вычислить комплексную частотную
характеристику (дискретизированное по
времени преобразование Фурье) рекурсивной
линейной дискретной системы, удовлетворяющей
разностному уравнению
c
начальным условием
Вычислить модуль комплексной частотной
характеристики. Вычислить фазовую
характеристику системы. Построить
графики модуля и фазы как функции
нормированной частоты
в диапазоне
где
,
– циклическая и линейная частоты,
-
частота дискретизации.
5
Вычислить элементы системы дискретных
экспоненциальных функций (ДЭФ) и записать
ее в виде матрицы
размером
Матрицу представить в алгебраической
и экспоненциальной форме.
6
Выполнить прямое дискретное преобразование
Фурье (ДПФ) последовательности
Восстановить исходную последовательность
через вычисление обратного ДПФ
последовательности коэффициентов
дискретного преобразования Фурье
.
7
Дана последовательность
Применить быстрое преобразование Фурье
(БПФ) для вычисления коэффициентов ДПФ.
Показать, что алгоритм БПФ можно применять
для восстановления
по коэффициентам ДПФ используемым в
качестве исходного массива данных.
Оценить вычислительную сложность
алгоритма БПФ.
8
Заданы последовательности
и
Вычислить линейную дискретную свертку
последовательностей с помощью ДПФ.
Построить график свертки.
9
Вычислить ядро дискретного косинусного
преобразования (ДКП) размером
Матрицу представить в тригонометрической
и алгебраической и форме.
10
Выполнить прямое ДКП
последовательности
Изобразить график функции
.
Восстановить исходную последовательность
через вычисление обратного ДКП
последовательности коэффициентов
дискретного косинусного преобразования
.
11
Вычислить двумерное ДКП массива данных
размером
Восстановить исходный массив, выполнив
двумерное обратное дискретное косинусное
преобразование (ОДКП), если
12 Вычислить среднеквадратичную ошибку восстановления исходных данных (задача 11) при обнулении 75% наименьших по значениям коэффициентов преобразования ДКП и последующем выполнении ОДКП над полученным массивом.
Контрольное задание № 2
1
Дана дискретная последовательность
Записать
выражение в виде суммы взвешенных и
задержанных цифровых единичных отсчетов,
определяющее значение отсчета с номером
2 Заданы входная последовательность и импульсная характеристика дискретной системы Вычислить дискретную линейную свертку. Построить график свертки.
3 Решить разностное уравнение c начальным условием , где входная последовательность, отклик линейной стационарной дискретной системы.
4
Вычислить импульсную характеристику
идеального фильтра нижних частот (ФНЧ)
с частотой среза
,
если его частотная характеристика,
равная на промежутке [
]
,
вне
этого интервала вычисляется по
периодичности. Здесь
- это нормированная частота, а
- это циклическая и линейная частоты,
-
частота дискретизации, нормированная
частота среза ФНЧ
5
Вычислить элементы системы дискретных
экспоненциальных функций (ДЭФ) и записать
систему в виде матрицы
размером
Матрицу представить в алгебраической
и экспоненциальной форме.
6
Выполнить прямое дискретное преобразование
Фурье (ДПФ) последовательности
Восстановить исходную последовательность
через вычисление обратного ДПФ
последовательности коэффициентов
дискретного преобразования Фурье
.
7
Дана последовательность
Применить быстрое преобразование Фурье
(БПФ) для вычисления коэффициентов ДПФ.
Показать, что алгоритм БПФ можно применять
для восстановления
по коэффициентам ДПФ используемым в
качестве исходного массива данных.
Оценить вычислительную сложность
алгоритма БПФ.
8
Заданы последовательности
и
Вычислить линейную дискретную свертку
последовательностей с помощью ДПФ.
Построить график свертки
9
Вычислить ядро (матрицу)
дискретного косинусного преобразования
(ДКП) размером
Матрицу представить в тригонометрической
и числовой форме.
10
Выполнить прямое ДКП
последовательности
Изобразить график функции
.
Восстановить исходную последовательность
через вычисление обратного ДКП
последовательности коэффициентов
дискретного косинусного преобразования
.
11
Вычислить двумерное ДКП массива данных
размером
Восстановить исходный массив, выполнив
двумерное обратное дискретное косинусное
преобразование (ОДКП), если
12 Вычислить среднеквадратичную ошибку восстановления исходных данных (задача 11) при обнулении 50% наименьших по значениям коэффициентов преобразования ДКП и последующем выполнении ОДКП над полученным массивом.
Контрольное задание № 3
1
Покажите, что дискретная система,
описываемая уравнением
является линейной.
2
Вычислить линейную свертку двух
дискретных последовательностей, где
,
.
Построить график свертки.
3
Показать, что разностное уравнение
c
начальным условием
},
где
входная последовательность, описывает
отклик cумматора
.
4
Вычислить Фурье-образ (дискретизированное
по времени преобразование Фурье)
прямоугольного окна
.
Вычислить ширину главного лепестка и
всех боковых лепестков Фурье-образа
прямоугольного окна
Изобразить
график модуля комплексной частотной
характеристики окна.
5
Вычислить элементы системы дискретных
экспоненциальных функций (ДЭФ) и записать
систему в виде матрицы
размером
Матрицу представить в алгебраической
и экспоненциальной форме.
6
Выполнить прямое дискретное преобразование
Фурье (ДПФ) последовательности
Восстановить исходную последовательность
через вычисление обратного ДПФ
последовательности коэффициентов
дискретного преобразования Фурье
.
7
Дана последовательность
Применить быстрое преобразование Фурье
(БПФ) для вычисления коэффициентов ДПФ.
Показать, что алгоритм БПФ можно применять
для восстановления
по коэффициентам ДПФ используемым в
качестве исходного массива данных.
Оценить вычислительную сложность
алгоритма БПФ.
8
Заданы последовательности
и
Вычислить циклическую дискретную
свертку последовательностей с помощью
ДПФ. Построить график свертки.
9
Вычислить ядро (матрицу)
дискретного косинусного преобразования
(ДКП) размером
Матрицу представить в тригонометрической
и числовой форме.
10
Выполнить прямое ДКП
последовательности
Изобразить график функции
.
Восстановить исходную последовательность
через вычисление обратного ДКП
последовательности коэффициентов
дискретного косинусного преобразования
.
11
Вычислить двумерное ДКП массива данных
размером
Восстановить исходный массив, выполнив
двумерное обратное дискретное косинусное
преобразование (ОДКП), если
12 Вычислить среднеквадратичную ошибку восстановления исходных данных (задача 11) при обнулении 50% наименьших по значениям коэффициентов преобразования ДКП и последующем выполнении ОДКП над полученным массивом.
Контрольное задание № 4
1
Покажите, что дискретная система c
входным воздействием
и откликом
,
описываемая уравнением
,
является нелинейной.
2
Вычислить линейную свертку двух
дискретных последовательностей, где
,
.
Построить график свертки.
3
Показать, что разностное уравнение
c
начальным условием
},
где
входная последовательность, описывает
отклик cумматора
.
4
Вычислить Фурье-образ (дискретизированное
по времени преобразование Фурье)
последовательности
гдеПостроить
графики модуля и фазы как функции
нормированной частоты
в диапазоне
где
,
– циклическая и линейная частоты,
-
частота дискретизации.
5
Вычислить элементы системы дискретных
экспоненциальных функций (ДЭФ) и записать
систему в виде матрицы
размером
Матрицу представить в алгебраической
и экспоненциальной форме.
6
Выполнить прямое дискретное преобразование
Фурье (ДПФ) последовательности
Восстановить исходную последовательность
через вычисление обратного ДПФ
последовательности коэффициентов
дискретного преобразования Фурье
.
7
Дана последовательность
Применить быстрое преобразование Фурье
(БПФ) для вычисления коэффициентов ДПФ.
Показать, что алгоритм БПФ можно применять
для восстановления
по коэффициентам ДПФ используемым в
качестве исходного массива данных.
Оценить вычислительную сложность
алгоритма БПФ.
8
Заданы последовательности
и
Вычислить циклическую дискретную
свертку последовательностей с помощью
ДПФ. Построить график свертки.
9
Вычислить ядро (матрицу)
дискретного косинусного преобразования
(ДКП) размером
Матрицу представить в тригонометрической
и числовой форме.
10
Выполнить прямое ДКП
последовательности
Изобразить график функции
.
Восстановить исходную последовательность
через вычисление обратного ДКП
последовательности коэффициентов
дискретного косинусного преобразования
.
11
Вычислить двумерное ДКП массива данных
размером
Восстановить исходный массив, выполнив
двумерное обратное дискретное косинусное
преобразование (ОДКП), если
12 Вычислить среднеквадратичную ошибку восстановления исходных данных (задача 11) при обнулении 12,5 % наименьших по значениям коэффициентов преобразования ДКП и последующем выполнении ОДКП над полученным массивом.
Контрольное задание № 5
1
Вычислить импульсную характеристику
дискретной рекурсивной системы для
входа
.
Соотношение вход-выход системы описывается
разностным уравнением
с постоянными коэффициентами
.
2
Вычислить линейную свертку двух
дискретных последовательностей, где
импульсная характеристика цифровой
системы,
.
Построить график свертки.
3
Решить разностное уравнение
c
начальным условием
цифровой единичный импульс,
отклик рекурсивной линейной дискретной
системы.
4
Показать, что Фурье-образ (дискретизированное
по времени преобразование Фурье)
последовательности
,
где
равен
.
Построить графики модуля и фазы как
функции нормированной частоты
в диапазоне
где
,
– циклическая и линейная частоты,
-
частота дискретизации.
5
Вычислить элементы системы дискретных
экспоненциальных функций (ДЭФ) и записать
систему в виде матрицы
размером
Матрицу представить в алгебраической
и экспоненциальной форме.
6
Выполнить прямое дискретное преобразование
Фурье (ДПФ) последовательности
Восстановить исходную последовательность
через вычисление обратного ДПФ
последовательности коэффициентов
дискретного преобразования Фурье
.
7
Дана последовательность
Применить быстрое преобразование Фурье
(БПФ) для вычисления коэффициентов ДПФ.
Показать, что алгоритм БПФ можно применять
для восстановления
по коэффициентам ДПФ используемым в
качестве исходного массива данных.
Оценить вычислительную сложность
алгоритма БПФ.
8
Задана последовательность
Вычислить циклическую дискретную
автосвертку последовательности с
помощью ДПФ. Построить график свертки.
9
Вычислить ядро (матрицу)
дискретного косинусного преобразования
(ДКП) размером
Матрицу представить в тригонометрической
и числовой форме.
10
Выполнить прямое ДКП
последовательности
Изобразить график функции
.
Восстановить исходную последовательность
через вычисление обратного ДКП
последовательности коэффициентов
дискретного косинусного преобразования
.
11
Вычислить двумерное ДКП массива данных
размером
Восстановить исходный массив, выполнив
двумерное обратное дискретное косинусное
преобразование (ОДКП), если
12 Вычислить среднеквадратичную ошибку восстановления исходных данных (задача 11) при обнулении 50% наименьших по значениям коэффициентов преобразования ДКП и последующем выполнении ОДКП над полученным массивом.
Контрольное задание № 6
1
Вычислить импульсную характеристику
дискретной рекурсивной системы для
входа
.
Соотношение вход-выход системы описывается
разностным уравнением
с коэффициентом
.
2
Вычислить отклик линейной дискретной
системы по формуле свертки. Заданы
импульсная характеристика
и входное воздействие
Построить график свертки.
3
Записать разностное уравнение рекурсивной
линейной дискретной системы второго
порядка. Вычислить отклик
этой системы c
начальным условием
для
значений
цифровой единичный импульс.
4
Вычислить модуль и фазу Фурье-образа
(дискретизированное по времени
преобразование Фурье) последовательности
,
гдеПостроить
графики модуля и фазы как функции
нормированной частоты
в диапазоне
где
,
– циклическая и линейная частоты,
-
частота дискретизации.
5
Вычислить элементы системы дискретных
экспоненциальных функций (ДЭФ) и записать
систему в виде матрицы
размером
Матрицу представить в алгебраической
и экспоненциальной форме.
6
Выполнить прямое дискретное преобразование
Фурье (ДПФ) последовательности
Восстановить исходную последовательность
через вычисление обратного ДПФ
последовательности коэффициентов
дискретного преобразования Фурье
.
7Дана
последовательность
Применить быстрое преобразование Фурье
(БПФ) для вычисления коэффициентов ДПФ.
Показать, что алгоритм БПФ можно применять
для восстановления
по коэффициентам ДПФ используемым в
качестве исходного массива данных.
Оценить вычислительную сложность
алгоритма БПФ.
8
Задана последовательность
Вычислить циклическую дискретную
автосвертку последовательности
с помощью ДПФ. Построить график свертки.
9
Вычислить ядро (матрицу)
дискретного косинусного преобразования
(ДКП) размером
Матрицу представить в тригонометрической
и числовой форме.
10
Выполнить прямое ДКП
последовательности
Изобразить график функции
.
Восстановить исходную последовательность
через вычисление обратного ДКП
последовательности коэффициентов
дискретного косинусного преобразования
.
11
Вычислить двумерное ДКП массива данных
размером
Восстановить исходный массив, выполнив
двумерное обратное дискретное косинусное
преобразование (ОДКП), если
12 Вычислить среднеквадратичную ошибку восстановления исходных данных (задача 11) при обнулении 50% наименьших по значениям коэффициентов преобразования ДКП и последующем выполнении ОДКП над полученным массивом.
Контрольное задание № 7
1
Изобразить произвольную дискретную
последовательность,
записанную в виде суммы взвешенных и
задержанных цифровых единичных отсчетов,
2
Вычислить отклик линейной дискретной
системы по формуле свертки. Заданы
импульсная характеристика
и входное воздействие
Построить график свертки.
3
Вычислить импульсную характеристику
cумматора,
описываемого выражением
для
.
4
Вычислить комплексную частотную
характеристику (дискретизированное по
времени преобразование Фурье) рекурсивной
линейной дискретной системы, удовлетворяющей
разностному уравнению
c
начальным условием
Вычислить модуль комплексной частотной
характеристики. Вычислить фазовую
характеристику системы. Построить
графики модуля и фазы как функции
нормированной частоты
в диапазоне
где
,
– циклическая и линейная частоты,
-
частота дискретизации.
5
Представить в экспоненциальной и
алгебраической формах матрицы
системы дискретных экспоненциальных
функций (ДЭФ) с минимальными фазами.
Размер
:
6
Выполнить прямое дискретное преобразование
Фурье (ДПФ) последовательности
Восстановить исходную последовательность
через вычисление обратного ДПФ
последовательности коэффициентов
дискретного преобразования Фурье
.
7Дана
последовательность
Применить быстрое преобразование Фурье
(БПФ) для вычисления коэффициентов ДПФ.
Показать, что алгоритм БПФ можно применять
для восстановления
по коэффициентам ДПФ используемым в
качестве исходного массива данных.
Оценить вычислительную сложность
алгоритма БПФ.
8
Задана последовательность
Вычислить циклическую дискретную
автосвертку последовательности
с помощью ДПФ. Построить график свертки.
9
Вычислить ядро (матрицу)
дискретного косинусного преобразования
(ДКП) размером
Матрицу представить в тригонометрической
и числовой форме.
10
Выполнить прямое ДКП
последовательности
Восстановить исходную последовательность
через вычисление обратного ДКП
последовательности коэффициентов
дискретного косинусного преобразования
.
11
Вычислить двумерное ДКП массива данных
размером
Изобразить график функции
.
Восстановить исходный массив, выполнив
двумерное обратное дискретное косинусное
преобразование (ОДКП), если
12 Вычислить среднеквадратичную ошибку восстановления исходных данных (задача 11) при обнулении 68,75% наименьших по значениям коэффициентов преобразования ДКП и последующем выполнении ОДКП над полученным массивом.
Контрольное задание № 8