
- •1 Когерентность и монохроматичность световых волн.
- •2 Время и длина когерентности световой волны
- •3 Сложение интенсивностей световых волн при интерференции.
- •4 Расчет интерференционной картины от двух когерентных источников.
- •5 Кольца Ньютона.
- •6 Просветление оптики
- •7 Принцип Гюйгенса-Френеля. Метод зон Френеля.
- •8 Дифракция Френеля на круглом отверстии и диске.
- •9 Дифракция Фраунгофера на одной щели.
- •10 Дифракция Фраунгофера на дифракционной решетке.
- •11 Понятие о голографии.
- •12 Естественный и поляризованный свет. Циркулярно- и плоско-поляризаванный свет. Степень поляризация света.
- •13 Поляризация света при отражении. Законы Малюса и Брюстера.
- •14. Многолучевая интерференция света
- •15. Проблемы излучения черного тела. Закон Кирхгофа.
- •16 Закон Стефана - Больцмана.
- •17. Квантовая гипотеза Планка. Энергия и импульс световых квантов.
- •18. Внешний фотоэффект.
- •19 Гипотеза де Бройля.
- •20 Соотношение неопределенностей Гайзенберга для импульса и координаты.
- •22. Дифракция электронов.
- •23. Волновая функция микрочастицы: её основные свойства и статистический смысл.
- •24. Нестационарное уравнение Шрёдингера.
- •25. Уравнение Шрёдингера для стационарных состояний.
- •26. Волновые функции частицы в одномерной прямоугольной яме.
- •27. Квантование энергии частицы в одномерной прямоугольной яме.
- •28. Волновые функции частицы при туннельном эффекте.
- •29. Коэффициент прозрачности в туннельном эффекте.
- •30. Структура уровней атома водорода.
- •31. Главное, орбитальное, магнитное, спиновые числа для волновых функций частиц
- •32. Принцип Паули. Распределение электронов в атоме по состояниям.
- •33. Понятие о квантовой статистике Бозе-Эйнштейна. Понятие о квантовой статистике Ферми-Дирака.
- •34. Влияние температуры на распределение электронов. Уровень Ферми
- •35. Зависимость сопротивления полупроводника от температуры. Уровень Ферми.
- •36 Строение атомного ядра и его характеристики
- •37 Понятие о свойствах и природе ядерных сил.
- •38 Виды радиоактивных превращений атомных ядер
- •39. Статистический закон распада атомных ядер
- •40 Реакция ядерного деления
12 Естественный и поляризованный свет. Циркулярно- и плоско-поляризаванный свет. Степень поляризация света.
Свет наз. естественным или неполяризованным, если направление колебания вектора Е не является преимущественным. Свет называется частично поляризованным, если в нем имеется преимущественные направление колебания вектора Е. Частично поляриз. свет можно рассматривать как совокупность одновременно распространяющихся в одном и том же направлении естественного и линейно поляризованного света. Поляризацией света назыв. выделение линейно поляризованного света из естественного или частично поляризованного. Для этой цели используют поляризаторы. Их действие основывается на поляризации света при его отражении и преломлении на границе раздела двух сред, а также на явлениях линейного лучепреломления и дихроизма. То же устройство можно использовать в качестве анализаторов, т.е. для определения характера и степени поляризации света.
Циркулярно поляризованный свет - это частный случай эллиптически поляризованного света.
В циркулярно поляризованном свете компонента электрического поля изменяется по направлению таким образом, что электрическое поле при движении по оси распространения света описывает спираль, отвечающую движению либо по часовой стрелке, либо против нее.
Плоскополяризованный свет получают с помощью двоякопреломляющих кристаллов. Для этого достаточно один из поляризованных лучей каким-нибудь образом погасить, тогда другой луч даст полностью поляризованный свет.
Степень поляризации тем выше, чем меньше размеры частиц, на которых происходит рассеяние.
13 Поляризация света при отражении. Законы Малюса и Брюстера.
Если угол падения света на границу раздела двух диэлектриков (например, на поверхность стеклянной пластинки) отличен от нуля, отраженный и преломленный лучи оказывают частично поляризован-ными.
Причем, при отражении от проводящей поверхности (например, от поверхности металла) получается эллиптически-поляризованный свет. Степень поляриза-ции зависит от угла падения.
Закон Малюса — зависимость интенсивности линейно-поляризованного света после его прохождения через поляризатор от угла между плоскостями поляризации падающего света и поляризатора.
Закон Брюстера — закон оптики, выражающий связь показателя преломления с таким углом, при котором свет, отражённый от границы раздела, будет полностью поляризованным в плоскости, перпендикулярной плоскости падения, а преломлённый луч частично поляризуется в плоскости падения, причем поляризация преломленного луча достигает наибольшего значения. Легко установить, что в этом случае отраженный и преломленный лучи взаимно перпендикулярны. Соответствующий угол называется углом Брюстера.
14. Многолучевая интерференция света
Многолучевая интерференция – участие в интерференции более 2 когерентных лучей.
В случае многолучевой интерференции по сравнению с двухлучевой происходит резкое увеличение яркости светлых интерференционных полос с одновременным уменьшением их ширины. Многолучевую интерференцию можно осуществить в многослойной системе чередующихся пленок с разными показателями преломления, нанесенных на отражающую поверхность.
Явление интерференции света используется в спектральном анализе, для точного измерения расстояний и углов, в задачах контроля качества поверхности, для создания светофильтров, зеркал, просветляющих покрытий. На явлении интерференции основана голография.