Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Biologia_1.docx
Скачиваний:
51
Добавлен:
23.02.2016
Размер:
421.43 Кб
Скачать

2Pq — доля гетерозигот.

Закон действует в идеальных популяциях, состоящих из бесконечного числа особей, полностью панмиксических и на которых не действуют факторы внешней среды.

  • Постэмбриональный период онтогенеза, его периодизация у человека. Основные процессы.

Постэмбриональный онтогенез – период индивидуального развития от рождения (выхода из яйцевых оболочек) до смерти. В этом периоде завершаются формообразовательные процессы, происходит половое созревание, размножение, старение и смерть.

Периоды: дорепродуктивный, репродуктивный (пубертатный), пострепродуктивный.

Периоды: новорожденности, грудной, раннего детства, детства (1 период), детства (2 период), подростковый, юношеский, зрелый (1 период), зрелый (2 период), пожилой, старческий, долгожителей.

Рост – увеличение размеров (массы) тела, вызванное увеличением количества и размеров клеток и накоплением внеклеточных образований.

Типы роста:

Неопределенный – рост в течение всей жизни (моллюски, рыбы)

Определенный – рост до определенного периода онтогенеза (птицы, млекопитающие)

Половая зрелость — стадия онтогенеза живого существа, когда оно достигает относительной взрослости, достаточной для способности полового размножения. У человека половая зрелость наступает в период пубертата. У мужского пола она наступает с началом сперматогенеза, у женского – с первой овуляцией. С наступлением половой зрелости процесс развития репродуктивной системы организма (также известен как половое созревание) практически завершён.

За развитие половых признаков у женщин отвечают эстрогены, у мужчин — андрогены. В пубертатный период становятся более заметны ранее не столь выраженные различия между девочками и мальчиками.

Репродукция человека – физиологическая функция, необходимая для сохранения человека как биологического вида. Процесс размножения у человека начинается с зачатия (оплодотворения), т.е. с момента проникновения мужской половой клетки (сперматозоида) в женскую половую клетку (яйцо, или яйцеклетку).

Старение – общебиологическая закономерность увядания организма, свойственная всем живым существам. Старение характеризуется морфологическими и физиологическими изменениями, приводящими к снижению обменных процессов.

Смерть — необратимое прекращение, остановка жизнедеятельности организма. Для одноклеточных живых форм завершением периода существования отдельного организма может являться как смерть, так и митотическое деление клетки.

Некоторые биологи выделяют понятие частичной смерти, то есть смерти группы клеток иди целого органа (некроз). У одноклеточных организмов - простейших - естественная смерть особи проявляется в форме деления, поскольку оно связано с прекращением существования данной особи и возникновением вместо нее двух новых. Смерть особи обычно сопровождается образованием трупа. В зависимости от причин, обусловливающих наступление смерти, у высших животных и человека различают: смерть естественную (физиологическую), наступающую в результате длительного последовательно развивающегося угасания основных жизненных отправлений организма, и смерть преждевременную (патологическую), вызываемую болезненными состояниями организма, поражением жизненно важных органов (мозга, сердца, легких, печени и др.). Преждевременная смерть может быть скоропостижной, т. е. наступить в течение нескольких минут и даже секунд (например, при инфаркте).

Смерть теплокровных животных и человека связана с прекращением, прежде всего, дыхания и кровообращения. Поэтому различают два основных этапа смерти: клиническую смерть и следующую за ней биологическую смерть, или истинную. По истечении периода клинической смерти, когда еще возможно полноценное восстановление жизненных функций, наступает биологическая смерть - необратимое прекращение физиологических процессов в клетках и тканях.

Реализация генетической информации обусловлена действием гормонов. Из факторов среды наиболее важные – питание, освещенность, влажность, температура, содержание кислорода и др.

  • Правила эволюции групп организмов.

Прогресс и его роль в эволюции. Развитие живой природы осуществляется от менее сложного к более сложному, от менее совершенного к более совершенному, т. е. происходила и происходит прогрессивная эволюция. Особо четко это проявляется при анализе палеонтологических данных. Если в отложениях архейской эры еще не обнаруживается никаких следов жизни, то в каждую из последующих эр и периодов строение организмов существенно усложняется. Таким образом, общий путь развития живой природы — от простого к сложному, от примитивного к более совершенному. Именно этот путь развития живой природы и обозначают термином «прогресс».

Однако всегда закономерно возникает вопрос: почему же в современной фауне и флоре одновременно с высокоорганизованными формами существуют и низкоорганизованные? Когда подобная проблема встала перед Ж. Б. Ламарком, он вынужден был прийти к признанию постоянного самозарождения простых организмов из неорганической материи. Ч. Дарвин же считал, что существование высших и низших форм не представляет затруднений для объяснения, «так как естественный отбор, или выживание наиболее приспособленных, не предполагает обязательного прогрессивного развития — он только дает преимущество тем изменениям, которые благоприятны для обладающего ими существа в сложных условиях жизни... А если от этого нет никакой пользы, то естественный отбор или не будет вовсе совершенствовать эти формы, или усовершенствует их в очень слабой степени, так что они сохранятся на бесконечные времена на их современной низкой ступени организации».

К этой проблеме в начале 20-х годов обратился А. Н. Северцов. Учение о прогрессе в эволюции было в дальнейшем развито его учеником И. И. Шмальгаузеном.

Процесс эволюции идет непрерывно в направлении максимального приспособления живых организмов к условиям окружающей среды (т. е. происходит возрастание приспособленности потомков по сравнению с предками). Такое возрастание приспособленности организмов к окружающей среде А. Н. Северцов назвал биологическим прогрессом. Критериями биологического прогресса являются: 1) увеличение численности; 2) расширение ареала; 3) прогрессивная дифференциация — увеличение числа систематических групп, составляющих данный таксон.

Эволюционный смысл выделенных критериев заключается в следующем: возникновение новых приспособлений снижает элиминацию особей, в результате средний уровень численности вида возрастает. Стойкое повышение численности потомков по сравнению с предками приводит к увеличению плотности населения, что, в свою очередь, через обострение внутривидовой конкуренции вызывает расширение ареала; этому же способствует и возрастание приспособленности. Расширение ареала приводит к тому, что вид при расселении сталкивается с новыми факторами среды, к которым необходимо приспосабливаться. Так происходит дифференциация вида, усиливается дивергенция, что ведет к увеличению дочерних таксонов.

Главные направления эволюции. Биологический прогресс достигается различными путями. А. Н. Северцов назвал их главными направлениями эволюционного процесса. В настоящее время выделяют следующие пути биологического прогресса: арогенез, аллогенез и катагенез.

Арогенез — путь развития группы организмов с выходом в другую адаптивную зону под влиянием приобретения группой каких-то принципиально новых приспособлений. Адаптивная зона — комплекс экологических условий, представляющих возможную среду жизни для данной группы организмов. Такой путь достижения биологического прогресса. А.Н. Северцов определил как ароморфоз или морфофизиологический прогресс. Арогенез характеризуется повышением уровня морфофизиологической организации, развитием приспособлений широкого значения, расширением среды обитания. Примером арогенеза сравнительно небольшого масштаба является возникновение и расцвет класса птиц. Проникнуть в новую адаптивную зону предки современных птиц могли лишь благодаря возникновению крыла как органа полета, совершенного четырехкамерного сердца, что значительно повысило интенсивность обменных процессов и обеспечило теплокровность, развитию отделов мозга, координирующих движение в воздухе. Все эти изменения в строении и функции органов и привели группы триасовых динозавров к арогенезу.

В мире растений типичными арогенезами являются выход растений на сушу, возникновение голосеменных, покрытосеменных растений и др.

Конкретные морфофизиологические изменения, определяющие арогенез той или иной группы, называются ароморфозами. К типичным ароморфозам у беспозвоночных относятся: симметрии тела, половая дифференцировка, появление билатеральной организации, трахейной системы дыхания, цефализация центральной нервной системы, переход на легочное дыхание; у птиц и млекопитающих — полное разделение сердца на правую и левую половины с дифференцировкой двух кругов кровообращения, увеличение рабочей емкости легких и др. Следствием этих ароморфозов является более совершенное окисление крови и обильное снабжение органов кислородом, а значит, и интенсификация функций органов. Дифференцировка и специализация органов пищеварения приводят к более полному использованию пищевых веществ, что способствует усилению процессов обмена веществ, повышению общей активности, возникновению теплокровности, усилению активности двигательных органов и усовершенствованию их конструкции.

Все эти и другие ароморфозы связаны между собой, а эрогенные признаки оказываются полезными в самых разных условиях существования. Например, обладание животными подвижными конечностями открывает возможности их многообразного использования в пустыне, в лесу, в долине, в горах, в воде, для рытья почвы и т. д. Такие ароморфозы, как образование поперечнополосатой мускулатуры, развитие ходильных конечностей и крыльев у насекомых, открыли перед ними возможности завоевания суши и частично воздуха (по сравнению с жабернодышащими членистоногими). К крупным ароморфозам в развитии растений можно отнести возникновение тканей и органов, закономерную смену поколений в цикле развития, образование цветков, плодов и т. д.

Ароморфозы формируются на основе наследственной изменчивости и естественного отбора и являются приспособлениями широкого значения. Они дают преимущества в борьбе за существование и открывают возможности освоения новой, прежде недоступной среды обитания.

Аллогенез — направление эволюции группы организмов, при которой у близких видов происходит смена одних частных приспособлений другими, а общий уровень организации остается прежним. Этот путь достижения биологического прогресса связан с проникновением организмов в какие-либо узкие (дифференцированные) условия среды в результате развития частных приспособлений. Такие частные приспособления называют алломорфозами или идиоадаптациями,

Катагенез — особый путь эволюции, связанный с проникновением организмов в более простую среду обитания и резким упрощением строения и образа жизни. Этот путь достижения биологического прогресса А.Н.Северцов обозначил термином «общая дегенерация». Например, у видов, обитающих в пещерах, происходит редукция органов зрения, депигментация, снижается активность передвижения. Примерами катагенеза является также возникновение паразитических форм. У растений-паразитов снижается активность фотосинтеза, наблюдается редукция листьев. У паразитических ленточных червей нет кишечника, слабо развита нервная система.

Упрощение организации вовсе не означает вымирания данной группы. Напротив, большинство видов паразитических организмов процветает, т. е. находится в состоянии биологического пpoгpecca.

Регресс к его роль в эволюции. Биологический регресс—явление, противоположное биологическому прогрессу. Он характеризуется обратными признаками: снижением численности особей, сужением ареала, постепенным или быстрым уменьшением видового многообразия группы. Биологический регресс может привести вид к вымиранию. Общая причина биологического регресса — отставание темпов эволюции группы от скорости изменения внешней среды. Эволюционные факторы действуют непрерывно, в результате чего происходит совершенствование приспособлений к изменяющимся условиям среды. Однако когда условия изменяются очень резко (часто благодаря непродуманной деятельности человека), виды не успевают сформировать соответствующие приспособления. Это приводит к сокращению численности видов, сужению их ареалов, угрозе вымирания. В состоянии биологического регресса находятся многие виды, например крупные млекопитающие, такие как уссурийский тигр, гепард, белый медведь и др.

Морфологический регресс — это упрощение в строении организмов того или иного вида в результате мутаций. Приспособления, формирующиеся на базе таких мутаций, могут при соответствующих условиях вывести группу на путь биологического прогресса, если она попадает в более узкую среду обитания.

Сочетание и изменение направлений эволюции. В эволюции происходит закономерная смена одних направлений другими. В пределах конкретной естественной монофилетической (имеющей общее происхождение) группы организмов за периодом арогенеза всегда следует период возникновения частных приспособлений — аллогенез. Такая смена путей достижения биологического прогресса характерна для всех групп и называется законом Северцова. Этот закон может быть выведен из теории естественного отбора. Если сравнить частоту возникновения арогенезов и аллогенезов, то можно заметить, что первые характерны для возникновения крупных групп организмов в эволюции — типов, отделов, отдельных отрядов, иногда семейств. Другими словами, арогенезы появляются значительно реже, чем аллогенезы (определяющие появление отдельных видов, родов).

Каждая крупная естественная группа организмов начинает свое существование арогенезами, которые, в частности, обеспечивают и завоевание новой среды. Достигнув на пути арогенных преобразований нового этапа развития, новой организации, естественная группа организмов расселяется в различные местообитания, после чего начинается процесс развития частных приспособлений. Объясняется это тем, что арогенезы не ограничены узкой средой. Они имеют универсальное значение. Следовательно, на основе одних и тех же apoгенезов могут возникнуть различные «надстройки», т. е. приспособления к частным условиям (аллогенезы). Так как эрогенные черты надолго сохраняют свое значение, то становится понятной относительная редкость арогенных преобразований.

  • Предмет биологии. Фундаментальные свойства живого.

Предметом биологии как учебной дисциплины служит жизнь во всех ее проявлениях: строение, физиология, поведение, индивидуальное (онтогенез) и историческое (эволюция, филогенез) развитие организмов, их взаимоотношение друг с другом и с окружающей средой.

Изучение закономерностей, процессов и механизмов индивидуального развития организмов, наследственности и изменчивости, хранения, передачи и использования биологической информации, обеспечения жизненных процессов энергией является основой для выделения эмбриологии, биологии развития, генетики, молекулярной биологии и биоэнергетики. Для уяснения биологических основ развития, жизнедеятельности и экологии конкретных представителей животного и растительного мира неизбежно обращение к общим вопросам сущности жизни, уровням ее организации, механизмам существования жизни во времени и пространстве. Наиболее универсальные свойства и закономерности развития и существования организмов и их сообществ изучает общая биология.

Сведения, получаемые каждой из наук, объединяются, взаимодополняя и обогащая друг друга, и проявляются в обобщенном виде, в познанных человеком закономерностях, которые либо прямо, либо с некоторым своеобразием (в связи с социальным характером людей) распространяют свое действие на человека.

Эти свойства в комплексе характеризуют любую живую систему и жизнь вообще:

1) самообновление. Связано с потоком вещества и энергии. Основу обмена веществ составляют сбалансированные и четко взаимосвязанные процессы ассимиляции (анаболизм, синтез, образование новых веществ) и диссимиляции (катаболизм, распад). В результате ассимиляции происходят обновление структур организма и образование новых его частей (клеток, тканей, частей органов). Диссимиляция определяет расщепление органических соединений, обеспечивает клетку пластическим веществом и энергией. Для образования нового нужен постоянный приток необходимых веществ извне, а в процессе жизнедеятельности (и диссимиляции, в частности) образуются продукты, которые нужно вывести во внешнюю среду;

2) самовоспроизведение. Обеспечивает преемственность между сменяющимися генерациями биологических систем. Это свойство связано с потоками информации, заложенной в структуре нуклеиновых кислот. В связи с этим живые структуры постоянно воспроизводятся и обновляются, не теряя при этом сходства с предыдущими поколениями (несмотря на непрерывное обновление вещества). Нуклеиновые кислоты способны хранить, передавать и воспроизводить наследственную информацию, а также реализовывать ее через синтез белков. Информация, хранимая на ДНК, переносится на молекулу белка с помощью молекул РНК;

3) саморегуляция. Базируется на совокупности потоков вещества, энергии и информации через живой организм

  • предмет структура, содержание и методы экологии. Основные разделы экологии. Место экологии среди биологических наук и ее связь с другими науками.

Экология – один из сравнительно молодых и бурно развивающихся разделов биологии – изучает взаимоотношения организмов между собой и со средой обитания. Взаимодействие организмов со средой рассматривает каждая биологическая наука. Экология затрагивает лишь ту его сторону, которая обусловливает развитие, размножение и выживание особей, структуру и динамику популяций, и сообществ.

последнее время экологи пришли к принципиально важному обобщению, показав, что условия среды осваиваются организмами на популяционно-биоценотическом уровне, а не отдельными особями вида. Это привело к интенсивному развитию учения о биологических макросистемах (популяциях, биоценозах, биогеоценозах), что оказало громадное влияние на развитие биологии в целом и всех её разделах в частности. В результате стали появляться всё новые и новые определения экологии. Её рассматривали как науку о популяциях, о структуре природы, о динамике численности и т.д. Но все они, несмотря на некоторую специфичность, определяют экологию как науку, исследующую законы жизни животных, растений и микроорганизмов в естественной среде обитания с учётом роли антропических факторов.

Основные формы существования видов животных, растений и микроорганизмов в естественной среде обитания – это внутривидовые группировки (популяции) или многовидовые сообщества (биоценозы). Поэтому современная экология изучает взаимоотношения организмов и среды на популяционно-биоценотическом уровне. Конечной целью экологическихисследований является выяснение путей, с помощью которых вид сохраняется в постоянно меняющихся условиях среды. Процветание вида заключается в поддержании оптимальной численности его популяций в биогеоценозе.

Следовательно, основным содержанием современной экологии становится исследование взаимоотношений организмов друг с другом и со средой на популяционно-биоценотическом уровне и изучение жизни биологических макросистем более высокого ранга: биогеоценозов (экосистем) и биосферы, их продуктивности и энергетики.   

Отсюда очевидно, что предметом исследования экологии являются биологические макросистемы (популяции, биоценозы, экосистемы) и их динамика во времени и пространстве.

Из содержания и предмета исследований экологии вытекают и её основные задачи, которые могут быть сведены к изучению динамики популяций, к учению о биогеоценозах и их системах. Структура биоценозов, на уровне формирования которых, как было отмечено, происходит освоение среды, способствует наиболее экономичному и полному использованию жизненных ресурсов. Поэтому главная теоретическая и практическая задача экологии заключается в том, чтобы вскрыть законы этих процессов и научиться управлять ими в условиях неизбежной индустриализации и урбанизации нашей планеты.

Важно, что в экологии объективно выделяются подразделения, изучающие органический мир на уровне особи (организма), популяции, вида, биоценоза, биогеоценоза (экосистемы) и биосферы. В связи с этим уже можно чётко выделить: аутэкологию (экология особей), демэкологию (экология популяций), эйдэкологию (экология видов) и синэкологию (экология сообществ).

Задачей аутэкологии (от греч. autos – сам) является установление пределов существования особи (организма) и тех пределов физико-химических факторов, которые организм выбирает из всего диапазона их значений. Изучение реакций организмов на воздействия факторов среды позволяет выявить не только эти пределы, но и физические, а также морфологические изменения, характерные для данных особей.

Демэкология (от греч. demos – народ) изучает естественные группировки особей одного вида, т.е. популяции – элементарные надорганизменные макросистемы. Важнейшей задачей её является выяснение условий, при которых формируются популяции, а также изучение внутрипопуляционных группировок и их взаимоотношений, организации (структуры), динамики численности популяций.

Эйдэкология (от греч. eidos – образ, вид), или экология видов, - наименее разработанное подразделение современной экологии. Вид как уровень организации живойприроды, как надорганизменная биологическая макросистема еще не стал объектом экологических исследований. Это объясняется тем, что по мере развития экологии внимание и интерес исследователей с организма, т.е. с аутэкологии, переключились на популяцию – дэмэкологию, а затем на биоценоз, биогеоценоз и биосферу в целом.

Синэкология (от греч. syn – вместе), или экология сообществ (биоценология), изучает ассоциации популяций разных видов растений, животных и микроорганизмов, образующих биоценозы, пути формирования и развития последних, структуру и динамику, взаимодействие их с физико-химическими факторами среды, энергетику, продуктивность и другие особенности. Базируясь на аут-, дем-, и эйдэкологии, синэкологияприобретает чётко выраженный общебиологический характер. В основе аут-, дем-, и эйдэкологических исследований лежат особь (организм), популяция и вид конкретной группы живых существ (животные, растения, микроорганизмы). Синэкологические же исследования направлены на изучение сложного многовидового комплекса взаимосвязанных организмов (биоценоз), существующего в строго определённой физико-химической среде, на рассмотрение с качественной и ко На базе этих направлений формируются новые: глобальная экология, которая разрабатывает проблемы биосферы в целом, и социоэкология, которая изучает проблемы взаимоотношений природы и общества. При этом границы между направлениями и разделами довольно размыты: постоянно возникают направления на стыке таких отраслей экологии, как популяционная экология и биоценология, или физиологическая и популяционная экология. Все эти направления тесно связаны с классическими отраслями биологии: ботаникой, зоологией, физиологией. При этом пренебрежение традиционными натуралистическими направлениями экологии чревато негативными явлениями и грубыми методологическими ошибками, может привести к затормаживанию развития всех остальных направлений экологии.личественной точки их соотношения.

полевые, лабораторные и экспериментальные исследования.

Экология, как было отмечено, имеет свою специфику: объектом её исследования служат не единичные особи, а группы особей, популяции (в целом или частично) и их сообщества, т.е. биологические макросистемы. Многообразие связей, формирующихся на уровне биологических макросистем, обусловливает разнообразие методов экологических исследований.

Для эколога первостепенное значение имеют полевые исследования, т.е. изучение популяций видов и их сообществ в естественной обстановке, непосредственно в природе. При этом обычно используются методы физиологии, биохимии, анатомии, систематики и других биологических, да и не только биологических наук. Наиболее тесно экологические исследования связаны с физиологическими. Однако между ними имеется принципиальная разница. Физиология изучает функции организма и процессы, протекающие в нём, а также влияние на эти процессы различных факторов. Экология же,  используя физиологические методы, рассматривает реакции организма как единого целого на констелляцию внешних факторов, т.е. на совместное воздействие этих факторов при строгом учёте сезонной цикличности жизнедеятельности организма и внутрипопуляционной разнородности.

Полевые методы позволяют установить результат влияния на организм или популяцию определённого комплекса факторов, выяснить общую картину развития и жизнедеятельности вида в конкретных условиях.

Однако наблюдения не могут дать вполне точного ответа, например, на вопрос, какой же из факторов среды определяет характер жизнедеятельности особи, вида, популяции или сообщества. На этот вопрос можно ответить только с помощью эксперимента, задачей которого является выяснение причин наблюдаемых в природе отношений. В связи с этим экологический эксперимент, как правило, носит аналитический характер. Экспериментальные методы позволяют проанализировать влияние на развитие организма отдельных факторов в искусственно созданных условиях и таким образом изучить всё разнообразие экологических механизмов, обусловливающих его нормальную жизнедеятельность.

На основе результатов аналитического эксперимента можно организовать новые полевые наблюдения или лабораторные эксперименты. Выводы, полученные в лабораторном эксперименте, требуют обязательной проверки в природе. Это даёт возможность глубже понять естественные экологические отношения популяций и сообществ.

Эксперимент в природе отличается от наблюдения тем, что организмы искусственно ставятся в условия, при которых можно строго дозировать тот или  иной фактор и точнее, чем при наблюдении, оценить его влияние.

Эксперимент может носить и самостоятельный характер. Например, результаты изучения экологических связей насекомых дают возможность установить факторы, влияющие на скорость развития, плодовитость, выживаемость ряда вредителей (температура, влажность, пища).

В экологическом эксперименте трудно воспроизвести весь комплекс природных условий, но изучить влияние отдельных факторов на вид, популяцию или сообщество вполне возможно.

Примером экологических экспериментов широких масштабов могут служить исследования, проводимые при создании лесозащитных полос, при мелиоративных и различных сельскохозяйственных работах. Знание при этом конкретных экологических особенностей многих растений, животных и микроорганизмов позволяет управлять деятельностью тех или иных вредных или полезных организмов.

В современных условиях экологические исследования играют существенную роль в решении ряда теоретических и практических задач. Динамика численности организмов, сезонное развитие, расселение и акклиматизация полезных и вредных видов, прогнозы размножения и распространения – вот основные в настоящее время экологические проблемы. Разработка их требует рационального сочетания полевых, лабораторных и экспериментальных исследований, которые должны взаимно дополнять и контролировать друг друга.

Математические методы и моделирование.

При экологическом исследовании, которое обычно поводится на определённом количестве особей, изучаются природные явления во всём их разнообразии: общие закономерности, присущие макросистеме, её реакции на изменение условий существования и др. Но каждая особь, индивидуум неодинаковы, отличны друг от друга. Кроме того, выбор особи из всей популяции носит случайный характер. И лишь применение методов математической статистики даёт возможность по случайному набору различных вариантов определить достоверность тех или иных результатов (степень отклонения их от нормы, случайные отклонения или закономерности) и получить объективное представление о всей популяции.

Однако как только было установлено, что все биологические системы, в том числе и надорганизменные макросистемы, обладают способностью к саморегуляции, ограничиваться методами математической статистики стало невозможно. Поэтому в современной экологии широко применяются методы теории информации и кибернетики, тесно связанные с такими областями математики, как теория вероятности, математическая логика, дифференциальные и интегральные исчисления, теория чисел, матричная алгебра.

В последнее время широкое распространение получило моделирование биологических явлений, т.е. воспроизведение в искусственных системах различных процессов, свойственных живой природе.

В различных областях биологии широко применяются так называемые живые модели. Несмотря на то что различные организмы отличаются друг от друга сложностью структуры и функции, многие биологические процессы у них протекают практически одинаково. Поэтому изучать их удобно на более простых существах. Они то и становятся живыми моделями. В качестве примера можно привести зоохлореллу, которая служит моделью для изучения обмена веществ; моделью для исследования внутриклеточных процессов являются гигантские растительные и животные клетки и т.д.

Основной задачей биологического моделирования является экспериментальная проверка гипотез относительно структуры и функции биологических систем. сущность этого метода заключается в том, что вместе с оригиналом, т.е. с какой-то реальной системой, изучается его искусственно созданное подобие – модель. В сравнении с оригиналом модель обычно упрощена, но свойства их сходны. В противном случае полученные результаты могут оказаться недостоверными, не свойственными оригиналу.

В зависимости от особенностей оригинала и задач исследования применяются самые разнообразные модели (рис. 1).Реальные (натурные, аналоговые) модели, если таковые удаётся создать, отражают самые существенные черты оригинала. Например, аквариум может служить моделью естественного водоёма. Однако создание реальных моделей сопряжено с большими техническими трудностями, так как пока ещё не удаётся достичь точного воспроизведения оригинала.

Знаковая модель представляет собой условное отображение оригинала с помощью математических выражений или подобного описания.

Наибольшее распространение в современных экологических исследованиях получили концептуальные и математические модели и их многочисленные разновидности. Разновидности концептуальных моделей характеризуются подробным описанием системы (научный текст, схема системы, таблицы, графики и т.д.). Математические модели являются более эффективным методом изучения экологических систем, особенно при определении количественных показателей. Математические символы, например, позволяют сжато описать сложные экологические системы, а уравнения дают возможность формально определить взаимодействия различных их компонентов.

  • предмет и задача медицинской паразитологии. Пути и способы заражения паразитарными болезнями:алиментарный, геооральный, инокулятивный, контаминатиный, контактный,аспирационный, гемический. Примеры.

Медицинская паразитология — раздел медицины, изучающий паразитов человека и вызываемые имизаболеванияи патологические состояния, способыпрофилактикизаражения, способылечениязаражённого или заболевшего человека.

Пути и способы заражения паразитарными болезнями:

Алиментарный-через рот с пищевыми продуктами и водой

Трансплацентарный-из организма матери в организм плода

Трансмиссивный-при укусе кровососущего насекомого

Контактно-бытовой-при контакте с больным или его вещами

Трансфузионный-при переливании зараженной крови

Перкутанный-внедрение личинок паразита через кожу

№93 Экологические принципы борьбы с паразитарными заболеваниями. Учение Скрябина о девастанции. Эволюция паразитов и паразитизма под действием антропогенного фактора.

В связи с тем, что в циркуляцию возбудителя бывает включено большое количество хозяев, а часто и переносчиков, разрушение целых биогеоценотических комплексов, возникших в результате эволюционного процесса, экологически неразумно, вредно и даже технически невозможно. Лишь в тех случаях, если очаги являются небольшими и хорошо изученными, возможно комплексное преобразование таких биогеоценозов в направлении, исключающем циркуляцию возбудителя. Так, рекультивация опустыненных ландшафтов с созданием на их месте орошаемых садоводческих хозяйств, проводящаяся на фоне борьбы с пустынными грызунами и москитами, может резко снизить заболеваемость населения лейшманиозами. В большинстве же случаев природно-очаговых болезней профилактика их должна быть направлена в первую очередь на индивидуальную защиту (предотвращение от укусов кровососущими членистоногими, термическая обработка пищевых продуктов и т.д.) в соответствии с путями циркуляции в природе конкретных возбудителей.

  • Проблемы экологии Ростовской области

Ростовская область по своему экономическому развитию является индустриально-аграрной территорией, площадью 101 тыс. кв. км. В области на 1 января 1997 года проживает 4 млн. 420 тыс. человек, более двух третьей проживает в городах. В области проживают представители 100 национальностей. Атмосферный воздух – основной компонент биосферы. Первый научный труд, в котором обобщаются представления об атмосфере, принадлежит Аристотелю, высказавшему предположение, что Земля имеет форму шара и поэтому воздушная оболочка, ее окружающая, должна быть сферической. Это и выражается словом «атмосфера» (по-гречески «атмос» - пар, дыхание, а «сфера» - шар). Известно, что человек без пищи может жить несколько десятков суток, без воды – несколько суток, а без воздуха – не более нескольких минут. Общее количество воздуха в атмосфере составляет 5,15х10 т., а содержание в нем кислорода – в пять раз меньше. Это очень много. И опасаться, что в перспективе его не хватит, очевидно, не следует, даже при возрастании потребления всеми живыми организмами и расходования на производственные нужды. Серьезную опасность для человека представляет не нехватка воздуха как такового, а его прогрессирующее загрязнение. Под загрязнением атмосферы понимают присутствие в ней одного или более ингредиентов или их комбинаций в таких количествах и в течение такого времени, что они могут принести вред здоровью или благосостоянию человека, или чрезмерно повлиять на сложившийся уклад жизни. Особенностью загрязнителей атмосферы является их преимущественная локализация в сравнительно небольших географических районах – городах и других промышленных центрах. Скорость накопления вредных веществ превышает возможности самоочищения атмосферы.

Более чем 69% от общего объема составляют выбросы от автотранспорта. В 1997 году автотранспортом области выброшено 561,039 тыс. тонн загрязняющих веществ. В автомобильных двигателях внутреннего сгорания в мире ежегодно сжигается около 2 млрд. тонн нефтяного топлива. При этом коэффициент полезного действия в среднем составляет 23%, остальные 77% уходят на обогрев окружающей среды. В России автотранспорт ежедневно выбрасывает в атмосферы 16,6 млн. тонн загрязняющих веществ. 30% заболеваний граждан непосредственно связаны с загрязненностью атмосферного воздуха выхлопными газами. Автомобильными двигателями выделяются в воздух городов более 95% оксида углерода, около 65% углеводородов и 30% оксидов азота. Известно, что топливо сгорает в камере при взаимодействии с кислородом воздуха. Этот процесс сопровождается интенсивным выделением тепла, которое и преобразуется в работу. Воспламенение и сгорание бензиновоздушной смеси (горючей смеси) длится тысячные доли секунды, и к такому быстрому процессу она недостаточно хорошо приспособлена: в смеси остаются газы от предыдущего цикла, препятствующие доступу кислорода к частицам топлива, не удается добиться ее идеального перемешивания. В результате не все топливо окисляется до конечных продуктов, и для нормального протекания процесса сгорания топливо окисляется до конечных продуктов, и для нормального протекания процесса сгорания топливо приходится добавлять.

Основными загрязнителями являются теплоэнергетические установки, использующие твердое топливо (более половины суммарных выбросов сернистого газа, оксидов азота), и предприятия черной металлургии, например, доменное, мартеновское производства, огламерационные фабрики, коксохимические комплексы (около половины выброса монооксида углерода). А вредные газовые выбросы предприятий химической промышленности, вопреки установившемуся общему мнению, составляют всего 2% от их общей суммы. Необходимо, однако, подчеркнуть, что именно для многих предприятий этой отрасли характерна сравнительно высокая концентрация выбросов вредных веществ в так называемом селитетном воздухе (то есть в воздухе вблизи соответствующих предприятий).

Термин «кислотные дожди» ввел в 1872 году английский инженер Роберт Смит в книге «Воздух и дождь: начало химической климатологии». Кислотные дожди, содержащие растворы серной и азотной кислот, наносят значительный ущерб природе. При сжигании любого ископаемого топлива (угля, горючего сланца, мазута) в составе выделяющихся газов содержится диокиси серы и азота. В зависимости от состава топлива их может быть меньше или больше. Особенно насыщенные сернистым газом выбросы дают высокосернистые уголь и мазут. Миллионы тонн диоксидов серы, выбрасываемые в атмосферу, превращают выпадающие дожди в слабый раствор кислот. Дождевая вода, образующаяся при конденсации водяного пара должна иметь нейтральную реакцию, то есть рН (рН – показатель, характеризующий кислотные или щелочные свойства раствора). Но даже в самом чистом воздухе всегда есть диоксид углерода, и дождевая вода, растворяя его, чуть подкисляется (рН 5,6 – 5,7). А вобрав кислоты, образующиеся из диоксидов серы и азота, дождь становится заметно кислым. Уменьшение рН на одну единицу означает увеличение кислотности в 10 раз. Показатель рН меняется в разных водоемах, но в ненарушенных природной среде диапазон зтих изменений строго ограничен. Природные воды и почвы обладают буферными возможностями, они способны нейтрализовать определенную часть кислоты и сохранить среду. Однако очевидно, что буферные способности природы небеспредельны. В водоемы, пострадавшие от кислотных дождей, новую жизнь могут вдохнуть небольшие количества фосфатных удобрений; они помогают планктону усваивать нитраты, что ведет к снижениюкислотности воды. Земля и растения тоже страдают от кислотных дождей: снижается продуктивность почв, сокращается поступление питательных веществ, меняется состав почвенных микроорганизмов. Огромный вред наносят кислотные дожди лесам. Леса высыхают, развивается суховершинность на больших площадях. Кислота увеличивает подвижность в почвах алюминия, который токсичен мелких корней, и это приводит к угнетению листвы и хвои, хрупкости ветвей. Особенно страдают хвойные деревья, потому что хвоя сменяется реже, чем листья, и поэтому накапливает больше вредных веществ за один и тот же период. Хвойные деревья желтеют, у них изреживаются кроны, повреждаются мелкие корни. Но и у лиственных деревьев изменяется окраска листьев, преждевременно опадает листва, гибнет часть кроны, повреждается кора. Естественного возобновления хвойных и лиственных лесов не происходит. Все больший ущерб кислотные дожди наносят сельскохозяйственным культурам: повреждаются покровные ткани растений, изменяется обмен веществ в клетках, растения замедляют свой рост и развитие, уменьшается их способность к болезням и паразитам, падает урожайность. Кислотные дожди не только убивают живую природу, но и разрушают памятники архитектуры. Прочный, твердый мрамор, смесь окислов кальция (СаО и СО2), реагирует с раствором серной кислоты и превращается в гипс (CaSO4). Смена температур, потоки дождя и ветер разрушают этот мягкий металл. Страдают от кислотных дождей и люди, вынужденные потреблять питьевую воду, загрязненную токсичными металлами – ртутью, свинцом, кадмием и т.п. Спасать природу необходимо. Для этого придется резко снизить выбросы в атмосферу окислов серы и азота, но в первую очередь сернистого газа, так как именно серная кислота и ее соли на 70 – 80% обуславливают кислотность дождей, выпадающих на больших расстояниях от места промышленного выброса.

№84 Понятие о медицинской экологии. Экологические заболевания человека. Современный глобальный экологический кризис; пути и способы его преодоления.

Медицинская экология - это комплексная научная дисциплина, рассматривающая все аспекты воздействия окружающей средына здоровье населения с центром внимания на средовыхзаболеваниях.

Медицинская экология пытается установить причину заболеваний в непосредственной связи с окружающей средой, при этом учитывается большое разнообразие экологических факторов, нозологических форм заболеваний и генетических особенностей человека. Физические, химические агенты - обычныезагрязнителиокружающей среды. Особенности образа жизни человека (злоупотребление алкоголем, курение) также могут быть включены в список факторов риска.

Индуктором заболевания у человека могут быть различные причины. С одной стороны, это генетические дефекты наследственного аппарата, проявляющиеся в виде пигментной ксеродермы, синдрома Дауна и др. С другой стороны, средовые воздействия в сочетании с генетическими изменениями формируют огромное количество нозологических форм заболеваний. На основе этого можно сделать вывод, что рост числа хронических заболеваний во многом определяется факторами окружающей среды(абиотическимиибиологическими). Согласно данным ВОЗ 75% (на 2002 год) всех ежегодных смертей в мире обусловлено действием окружающей среды и неправильным образом жизни, 90% всех злокачественных новобразований вызывается факторами окружающей среды и только 10% - другими факторами. Анализ причин, приводящих к онкологическим заболеваниям показывает, что главные из них - экологически небезопасные продукты питания и курение.

  • Распространение паразитов в природе. Пути происхождения экто- и эндо паразитизма. Паразитоцетоз.

Паразитический образ жизни могут вести самые разнообразные организмы, не имеющие между собой ничего общего. Паразитизм известен в царстве Вирусы, среди прокариотических организмов, в царствах Грибы, Растения, Животные. Все вирусы являются паразитами. Их изучает отдельная наука — вирусология. Паразитические прокариоты изучаются микробиологией, паразитические грибы — микологией, паразитизм в растительном мире — фитопатологией, паразиты-животные, или зоопаразиты, — паразитологией.

Однако среди первично примитивных форм паразитизм встречается более часто, нежели среди высокоорганизованных организмов. Действительно, большая часть паразитов относится к типам Простейшие, Плоские черви. Круглые черви и Членистоногие.

В подтипе Позвоночные паразитизм встречается в классе Круглоротые, к которому относятся миноги и миксины — водные организмы, присасывающиеся к покровам рыб и питающиеся кровью, и в классе Млекопитающие в отряде рукокрылых. Это группа южноамериканских летучих мышей-вампиров. В обоих случаях паразитизм позвоночных представлен в виде временного и больше напоминает хищничество, с которым связан по происхождению.

Таким образом, одной из предпосылок к паразитическому образу жизни является исходно низкий уровень организации. Кроме того, большинство паразитов имеют малые размеры, по крайней мере по сравнению с хозяевами. Поэтому наибольшее число специализированных паразитов встречается в систематических группах, представленных мелкими животными.

Явление паразитизма, как и любой другой экологический феномен, возникло разными путями. С одной стороны, по-разному развиваются взаимные адаптации паразитов и хозяев в разных систематических группах организмов — классах и типах, с другой — различны направления эволюции, ведущие к возникновению разнообразных форм паразитизма.

Наиболее просто объясняется происхождение эктопаразитизма. Один из путей к этому — через увеличение количества источников питания с последующей их сменой.

Другой путь, ведущий к эктопаразитизму, — хищничество. Активные хищники, осваивающие для питания все более крупные жертвы, становятся вначале временными, а затем и постоянными эктопаразитами за счет удлинения контактов с организмом хозяина.

Иной путь возникновения эктопаразитизма — через усиление контакта так называемых гнездовых паразитов с поверхностью тела хозяина.

Основная масса случаев эндопаразитизма в полостных органах, имеющих связь с внешней средой, представляет собой явление, развившееся в результате случайного заноса в организм цист, яиц или личинок свободноживущих видов, предварительно имеющих адаптации к обитанию в почве или в воде, содержащей избыток органического вещества. Примером является угрица кишечная, которая в своем развитии сохранила возможность обитать и размножаться как в почве, так и в организме человека

Наиболее сложно и многообразно происхождение паразитов тканей внутренней среды.

Не исключается и вариант перехода к полостному паразитизму видов, предварительно адаптированных к эктопаразитизму.

Возможен переход к паразитированию в одном хозяине после предварительной адаптации к обитанию в другом, служащем источником питания первого.

Таким образом, путей перехода к паразитизму у разных видов животных много, но несомненным остается одно: паразитизм — явление вторичное.

  • Регуляция развития человека и животных на различных этапах онтогенеза. Тотипотентность.

Онтогенез (индивидуальное развитие) – совокупность процессов развития организма с момента образования зиготы и до смерти на основе реализации генетической информации в определенных условиях среды.

На любом этапе онтогенеза организм существует в единстве с окружающей средой. Так, в зависимости от температуры процессы развития замедляются или интенсифицируются.

Тотипотентность— это возможность клетки делиться и образовывать дифференцированные клетки организма, в том числе наружные ткани эмбриона. Тотипотентные клетки образуются в течение полового и бесполого размножения и представляют собой споры и зиготы. Зиготы — это продукты слияния двух гамет в результате оплодотворения. У некоторых организмов клетки могут дедифференцироваться и обретать тотипотентность.

  • Регенерация.

Регенерация — свойство всех живых организмов со временем восстанавливать поврежденные ткани, а иногда и целые потерянные органы. Регенерацией называется восстановление организмом утраченных частей на той или иной стадии жизненного цикла. Регенерация, происходящая в случае повреждения или утраты какого-нибудь органа или части организма, называется репаративной. Выделяют типичную и атипичную репаративную регенерацию.

При типичной регенерации утраченная часть замещается путем развития точно такой же части. Причиной утраты может быть внешнее воздействие (например, ампутация), или же животное намеренно отрывает часть своего тела (аутотомия), как ящерица, обламывающая часть своего хвоста, спасаясь от врага.

При атипичной регенерации утраченная часть замещается структурой, отличающейся от первоначальной количественно или качественно. У регенерировавшей конечности головастика число пальцев может оказаться меньше исходного, а у креветки вместо ампутированного глаза может вырасти антенна.

Регенерация у животных.

Способность к регенерации широко распространена среди животных. Низшие животные, как правило, чаще способны к регенерации, чем более сложные высокоорганизованные формы. Так, среди беспозвоночных гораздо больше видов, способных восстанавливать утраченные органы, чем среди позвоночных, но только у некоторых из них возможна регенерация целой особи из небольшого ее фрагмента. Тем не менее, общее правило о снижении способности к регенерации с повышением сложности организма нельзя считать абсолютным. Такие примитивные животные, как круглые черви и коловратки, практически не способны к регенерации, а у гораздо более сложных ракообразных и амфибий эта способность хорошо выражена; известны и другие исключения. Некоторые близкородственные животные сильно различаются в этом отношении. Так, у дождевого червя из передней или задней половины тела может полностью регенерировать новая особь, тогда как пиявки неспособны восстановить один утраченный орган. У хвостатых амфибий на месте ампутированной конечности образуется новая, а у лягушки культя просто заживает и никакого нового роста не происходит. Нет также четкой связи между характером эмбрионального развития и способностью к регенерации. Так, у некоторых животных со строго детерминированным развитием (гребневики, полихеты) во взрослом состоянии регенерация развита хорошо (у ползающих гребневиков и некоторых полихет целая особь может восстановиться из небольшого участка тела), а у некоторых животных с регулятивным развитием (морские ежи, млекопитающие) - достаточно слабо.

Многие беспозвоночные способны к регенерации значительной части тела. У большинства видов губок, гидроидных полипов, многих видов плоских, ленточных и кольчатых червей, мшанок, иглокожих и оболочников из небольшого фрагмента тела может регенерировать целый организм. Особенно примечательна способность к регенерации у губок. Если тело взрослой губки продавить через сетчатую ткань, то все клетки отделятся друг от друга, как просеянные сквозь сито. Если затем поместить все эти отдельные клетки в воду и осторожно, тщательно перемешать, полностью разрушив все связи между ними, то спустя некоторое время они начинают постепенно сближаться и воссоединяются, образуя целую губку, сходную с прежней. В этом участвует своего рода «узнавание» на клеточном уровне, о чем свидетельствует следующий эксперимент. Губки трех разных видов разделяли описанным способом на отдельные клетки и как следует перемешивали. При этом обнаружилось, что клетки каждого вида способны «узнавать» в общей массе клетки своего вида и воссоединяются только с ними, так что в результате образовалась не одна, а три новых губки, подобные трем исходным. Из других животных к восстановлению целого организма из взвеси клеток способна только гидра.

Регенерация у человека.

У человека хорошо регенерирует эпидермис, к регенерации способны также такие его производные, как волосы и ногти. Способностью к регенерации обладают также костная ткань (кости срастаются после переломов). С утратой части печени (до 25%), щитовидной или поджелудочной железы клетки оставшихся фрагментов начинают усиленно делиться и восстанавливают первоначальные размеры органа. К сожалению, нервные клетки такой способностью не обладают, за исключением периферических нервов. При определенных условиях могут регенерировать кончики пальцев.

  • Репарация генетического материала. Фотореактивация. Темновая репарация. Мутации, связанные с нарушением репарации и их роль в патологии.

Не все повреждения генетического аппарата, вызываемые мутагенами, реализуются в виде мутаций. Многие из них исправляются с помощью особых репарирующих ферментов. Репарация представляет эволюционно выработанные приспособления, повышающие помехоустойчивость генетической информации и ее стабильность в ряду поколений. Механизм репарации основан на том, что каждая молекула ДНК содержит два полных набора генетической информации, записанной в комплементарных друг другу полинуклеотидных нитях. Это обеспечивает сохранение неискаженной информации в одной нити, даже если другая повреждена, и по неповрежденной нити исправит дефект. В настоящее время известно три механизма репарации: фотореактивация, темновая репарация, пострепликативная репарация. Фотореактивация заключается в устранении видимым светом димеров тимина, особенно часто возникающих в ДНК под влиянием УФ-лучей. Замена осуществляется особым фотореактивирующим ферментом, молекулы которого не обладают сродством с неповрежденной ДНК, но опознают димеры тимина и связываются с ними сразу после их образования. Этот комплекс остается стабильным, пока не подвергнется действию видимого света. Видимый свет активирует молекулу фермента, она отделяется от димера тимина и одновременно разъединяет его на два отдельных тимина, восстанавливая исходную структуру ДНК. Темновая репарация не требует света. Она способна исправлять очень разнообразные повреждения ДНК. Темновая репарация протекает в несколько этапов при участии нескольких ферментов: 1) молекулы эндонуклеазы постоянно обследуют молекулу ДНК, опознав поврежденние, фермент подрезает вблизи него нить ДНК; 2) эндо- или экзонуклеаза делает в этой нити второй надрез, иссекая поврежденный участок; 3) экзонуклеаза значительно расширяет образующуюся брешь, отсекая десятки или сотни нуклеотидов; 4) полимераза застраивает брешь в соответствии с порядком нуклеотидов во второй (неповрежденной) нити ДНК. Световая и темновая репарации наблюдаются до того, как произошла репликация поврежденных молекул. Если же происходит репликация поврежденных молекул, то дочерние молекулы могут подвергнуться пострепликативной репарации. Механизм ее пока не ясен. Допускается, что при ней бреши в деффектах ДНК могут застраиваться фрагментами, взятыми от неповрежденных молекул. У человека известно заболевание пигментная ксеродерма. Кожа у таких людей ненормально чувствительна к солнечным лучам и при их интенсивном воздействии покрывается крупными пигментированными пятнами, изъязвляется и может перерождаться в рак кожи. Пигментная ксеродерма вызывается мутацией, нарушающей механизм репарации повреждений, вызываемых в ДНК кожных клеток УФ-лучами солнечного света

  • ришта...

возбудитель дракункулеза. Длина самки до 120 см, самца — только 2 см. Заболевание распространено в зонах с тропическим и субтропическим климатом, раньше встречалось в Средней Азии.

Жизненный цикл ришты связан с водной средой. Окончательные хозяева ришты — человек, обезьяны, домашние и дикие млекопитающие, у которых черви локализуются под кожей конечностей. У человека наиболее частая локализация — под кожей ног в области суставов. Описаны случаи обнаружения гельминта под серозной оболочкой желудка, под мозговыми оболочками, в стенке пищевода. Над передним концом зрелой самки образуется кожный пузырь, заполненный серозной жидкостью. Человек при этом ощущает сильный зуд, проходящий при соприкосновении с водой. Опускание ног в воду сопровождается разрывом пузыря и рождением живых микроскопических личинок, которые сразу проглатываются промежуточными хозяевами — циклопами. В полости тела циклопов они через несколько дней достигают инвазионности и при проглатывании с водой таких рачков попадают в кишечник, а затем мигрируют под кожу.

Весь жизненный цикл ришты длится 1 год. Интересно, что развитие паразитов у инвазированных людей происходит синхронно, таким образом, что самки становятся способными рождать личинок одновременно почти у всех носителей паразита. Этим достигается резкое повышение вероятности заражения огромного количества циклопов, а затем и основных хозяев в течение небольшого интервала времени. Эта особенность жизненного цикла ришты имеет огромное адаптивное значение в зонах с засушливым климатом и редкими, повторяющимися из года в год дождевыми периодами. Она имеет и существенное медицинское значение в связи с тем, что в очагах распространения дракункулеза выявляется большое количество пораженных этим паразитом людей в течение небольшого временного интервала. Это облегчает врачу постановку диагноза, лечение и проведение профилактических мероприятий.

Кроме общих аллергических реакций обязательно проявляется и местное воздействие паразита: локальные воспалительные реакции и нарушение функций суставов, прилежащих к зоне поражения.

Диагностика при типичной локализации проста: паразит виден под кожей. Атипичное расположение гельминта требует применения иммунологических реакций.

Личная профилактика также проста — кипячение или фильтрация питьевой воды, взятой из открытых водоемов. Общественная профилактика — современное водоснабжение обеззараженной водой; выявление и лечение больных гарантирует успех в борьбе с этим заболеванием.

  • свиной цепень...

возбудитель тениоза и цистицеркоза. Этот паразит меньше предыдущего, он достигает в длину 3 м. На головке кроме присосок у него находится венчик из 22—32 крючьев. В гермафродитных члениках не две, а три дольки яичника; матка в зрелых члениках имеет не более 12 пар боковых ответвлений. Яйца не отличаются от яиц предыдущего вида.

Жизненный цикл свиного цепня типичен. Окончательный хозяин паразита — человек. Характерной особенностью является способность члеников активно выползать из заднепроходного отверстия поодиночке. При подсыхании оболочка их лопается и яйца могут свободно рассеиваться во внешней среде. Этому процессу могут способствовать птицы и мухи. Из яиц, проглоченных промежуточным хозяином — свиньей, развивается онкосфера и позже цистицерки, как и у предыдущего вида.

Промежуточными хозяевами этого гельминта кроме домашних и диких свиней могут быть кошки, собаки и человек: В этом случае у них, так же как и у свиней, развивается цистицеркоз. Человек может проглотить яйца свиного цепня случайно, но более часто цистицеркоз возникает как осложнение тениоза. При этом заболевании особенно часто возникает обратная перистальтика кишечника и рвота. Зрелые членики могут таким образом попасть в желудок, перевариться там, а освободившиеся онкосферы проникают в сосуды кишечника, разносятся кровью и лимфой по организму, где в печени, мышцах, легких, мозге и других органах формируются цистицерки. Это может привести к быстрому смертельному исходу.

Лабораторная диагностика тениоза основана на обнаружении характерных зрелых члеников в фекалиях; диагностика цистицеркоза сложнее — путем рентгенологического обследования и постановки иммунологических реакций.

Для личной профилактики тениоза необходимо термически обрабатывать свинину, а цистицеркоза — соблюдать правила личной гигиены. Общественная профилактика — закрытое содержание свиней.

  • Синтетическая теория эволюции. Популяция как элементарная частица эволюции.

Синтетическая теория эволюции (СТЭ) — современная эволюционная теория, которая является синтезом различных дисциплин, прежде всего, генетики и дарвинизма. СТЭ также опирается на палеонтологию, систематику, молекулярную биологию и другие.

Авторы синтетической теории расходились во мнениях по ряду фундаментальных проблем и работали в разных областях биологии, но они были практически единодушны в трактовке следующих основных положений:

элементарной единицей эволюции считается локальная популяция;

материалом для эволюции являются мутационная и рекомбинационная изменчивость;

естественный отбор рассматривается как главная причина развития адаптаций, видообразования и происхождения надвидовых таксонов;

дрейф генов и принцип основателя выступают причинами формирования нейтральных признаков;

вид есть система популяций, репродуктивно изолированных от популяций других видов, и каждый вид экологически обособлен;

видообразование заключается в возникновении генетических изолирующих механизмов и осуществляется преимущественно в условиях географической изоляции.

Таким образом, синтетическую теорию эволюции можно охарактеризовать как теорию органической эволюции путем естественного отбора признаков, детерминированных генетически.

Популяция - это человеческое, животное или растительное население некоторой местности. В европейских языках это понятие, прежде всего, относится к человеку и уже во вторую очередь — к другим живым организмам.

Популяция — это группа особей, способная к более-менее устойчивому самовоспроизводству (как половому, так и бесполому), относительно обособленная (обычно географически) от других групп, с представителями которых (при половой репродукции) потенциально возможен генетический обмен. С точки зрения популяционной генетики, популяция — это группа особей, в пределах которой вероятность скрещивания во много раз превосходит вероятность скрещивания с представителями других подобных групп. Обычно говорят о популяциях как о группах в составе вида или подвида.

В современных эволюционных теориях (например, в Синтетической теории эволюции) популяция считается элементарной единицей эволюционного процесса.

Основные характеристики популяции:

Пространственное распределение особей

Особи, составляющие популяции, могут иметь типы пространственного распределения, которые выражают реакцию популяций на благоприятные и неблагоприятные физические условия или конкурентные отношения. Знание типа распределения организмов необходимо при оценке плотности популяции методом выборки.

Состояние и функционирование популяций зависит как от общей численности популяций, так и от пространственного распределения особей. Различают случайное, равномерное и групповое распределение особей и их групп. Рассмотрим пример, в котором с помощью математической обработки результатов экспериментов можно определить характер распределения особей в популяции.

Равномерное распределение особей

Равномерное распределение особей встречается в природе крайне редко. Оно чаще связано с острой конкуренцией между разными особями. Такой тип распределения характерен, например, для хищных рыб и колюшек с их территориальным инстинктом.

Пример равномерного распределения дает также пластинчато-жаберный моллюск, живущий на песчаных пляжах Ла-Манша.

Случайное распределение особей

Случайное распределение особей встречается только в однородной среде у видов, не обнаруживающих склонности к скоплению. Так, к примеру, изначально распределение мучного хрущака в муке совершенно случайное.

Распределение особей группами

Распределение особей группами более распространенное. Группы в свою очередь могут распределяться случайно или образовывать скопления. Особенно хорошо изучено пространственное размещение деревьев в лесу. Если деревья в лесу состоят из одной породы, то вначале они обычно распределяются скоплениями, и только со временем их размещение становится более равномерным, а густота в результате внутривидовой конкуренции уменьшается. Таким равномерным пространственным распределением отличаются, например, сосновые и буковые леса. В смешанных растительных сообществах подавляемые виды обычно образуют «букеты» (групповое распределение), а доминирующие виды имеют равномерное распределение.

Численность популяции это общее количество особей на данной территории или в данном объеме. Оно никогда не бывает постоянно и зависит от соотношения интенсивности размножения (плодовитости) и смертности. В процессе размножения происходит рост популяции, смертность же приводит к сокращению ее численности.

  • Синэкология, предмет, методы. Общая характеристика экологической системы, её структура и биологическая продуктивность, роль человека в ней. Сукцессия экосистемы и ее этапы. Отличия иск. Синэкологических систем от естественных.

Синэкология (от греч. syn – вместе), или экология сообществ (биоценология), изучает ассоциации популяций разных видов растений, животных и микроорганизмов, образующих биоценозы, пути формирования и развития последних, структуру и динамику, взаимодействие их с физико-химическими факторами среды, энергетику, продуктивность и другие особенности. Базируясь на аут-, дем-, и эйдэкологии, синэкологияприобретает чётко выраженный общебиологический характер. В основе аут-, дем-, и эйдэкологических исследований лежат особь (организм), популяция и вид конкретной группы живых существ (животные, растения, микроорганизмы). Синэкологические же исследования направлены на изучение сложного многовидового комплекса взаимосвязанных организмов (биоценоз), существующего в строго определённой физико-химической среде, на рассмотрение с качественной и количественной точки их соотношения.

Экология человека изучает закономерности возникновения, существования и развития антропоэкологических систем, которые представляют собой сообщество людей, находящееся в динамической взаимосвязи со средой и удовлетворяющее благодаря этому свои потребности.

Размеры таких систем различны в зависимости от численности и характера организации человеческих популяций. Это могут быть изоляты, демы, нации, наднациональные ассоциации, различающиеся по способу производства, укладу жизни, наконец, человечество в целом. Большое значение в определении размера антропоэкологической системы имеют природные условия. Наиболее многочисленные современные популяции, объединяющие более 80% человечества, обитают на 44% суши в области тропических лесов и саванн, а также в зоне умеренного пояса с кустарниковой растительностью или смешанными лесами.

Засушливые земли и зона пустынь, на которые приходится 18% суши, являются местом обитания 4% населения.

Главной отличительной чертой антропоэкологических систем по сравнению с природными экосистемами служит наличие в их составе человеческих сообществ, которым в развитии всей системы принадлежит доминирующая роль. Сообщества людей различаются по способу производства материальных ценностей и структуре социально-экономических отношений, от чего зависят способ организации труда, объем и способ распределения производимой продукции между членами сообщества. Активностью сообществ людей на занимаемой территории определяется уровень воздействия их на окружающую среду. Развивающиеся сообщества (например, в период индустриализации) характеризуются наряду с ростом численности населения, увеличением потребностей его в продуктах питания, сырье, водных ресурсах, размещении отходов. Это повышает нагрузку на природную среду, интенсифицирует использование биотических и абиотических факторов.

В процессе существования антропоэкологических систем взаимодействие людей и природной среды осуществляется по двум главным направлениям. Во-первых, происходят изменения биологических и социальных показателей отдельных индивидуумов и сообщества в целом, направленные на удовлетворение требований, предъявляемых человеку средой. Во-вторых, осуществляется перестройка самой среды для удовлетворения требований человека. На протяжении истории человечества соотношение названных изменений сдвигалось в сторону преобладающей роли второго направления. Естественная среда, в которой зарождалось человечество, в результате перехода к культурному земледелию и скотоводству уступила место частично очеловеченной среде сельских жителей. С возникновением городов современного типа произошел переход к существованию сообществ людей в полностью очеловеченной среде, границы распространения которой неуклонно расширяются.

Общим результатом биологических и социальных процессов в антропоэкологических системах служит индивидуальная и групповая приспособленность человеческих сообществ к жизни в средах обитания, различающихся по природным условиям, формам хозяйствования и культуры. Особенность такой приспособленности в отличие от приспособленности к среде популяций любых других живых организмов состоит в том, что человек адаптируется к условиям жизни не только физиологически, но прежде всего экономически, технически, эмоционально. Различные стороны и направления индивидуальной и групповой адаптации человека, вся совокупность условий жизни и экологических связей людей являются предметом изучения экологии человека. Именно это делает ее междисциплинарной наукой. В курсе биологии допустимо ограничиться рассмотрением отдельных вопросов, имеющих непосредственное отношение к задачам охраны здоровья людей. Среди них важное значение принадлежит биологической изменчивости популяций людей в связи с биогеографическими особенностями среды, а также медико-биологической характеристике антропогенных экологических систем. Экологические вопросы паразитологии включены в соответствующий раздел учебника и излагаются ниже.

Человечество представляет собой единственный на Земле вид, всесветно обитающий, что превращает его в экологический фактор с глобальным распространением влияния. Благодаря воздействию на все главные компоненты биосферы влияние человечества достигает самых отдаленных экологических зон планеты. Печальным примером этому служит, в частности, обнаружение опасных пестицидов в печени пингвинов и тюленей, отловленных в Антарктиде, где никогда ни один из них не применялся. Еще одна особенность человека как экологического фактора заключается в активном, творческом характере его деятельности. Энергия, которой манипулируют люди, обращается ими на изменение среды обитания. Экологический оптимум существования человека на основе его биологических механизмов ограничен, и возможность широкого расселения достигается не путем изменения людьми их собственной биологии, а путем создания очеловеченной среды.

Созданием вокруг себя искусственной среды обусловливается также и специфика человека как объекта действия экологических факторов. Это действие всегда опосредовано результатами производственной деятельности людей. Естественные экосистемы вытесняются антропогенными экосистемами, абсолютно доминирующим экологическим фактором которых является человек. Среда обитания человека включает биоприродный и социально-культурный компоненты, или естественную и искусственную среды. В естественной и искусственной средах человек представлен как социальное существо.

Факторы естественной и искусственной среды оказывают на человека постоянное влияние. Результаты действия природных факторов, различающихся в разных районах обитаемой части планеты, на протяжении истории человечества проявляются в настоящее время в экологической дифференциации населения Земного шара, подразделении его на расы и адаптивные типы (см. § 15.4). Социальные факторы обусловливают образование и закономерную смену хозяйственно-культурных типов сообществ людей. Они представляют собой комплекс хозяйства и культуры, характеризующий народы, которые различаются по происхождению, но обитают в сходных природно-ресурсных условиях и находятся на одинаковом социально-экономическом уровне.

  • Систематика ,морфология и биология возбудителя лейшманиозов. Обоснование лабораторной диагностики и профилактики.

Лейшмании Leischmania (кл. Жгутиковые) — возбудители лейшманиозов. Заболевания человека вызываются несколькими видами и подвидами паразитов, которые объединяются в четыре комплекса: L. donovani возбудитель висцерального лейшманиоза, L. tropicaвозбудитель кожного лейшманиоза, L. mexicana возбудитель лейшманиоза Центральной Америки, L. brasiliensis возбудитель бразильского лейшманиоза. Все виды сходны морфологически и имеют одинаковые циклы развития. Они существуют в двух формах: в безжгутиковой, или лейшманиальной, и жгутиковой; или промастиготной (рис. 19.8).

Лейшманиальная форма очень мелка — 3—5 мкм в диаметре. Характерной чертой ее является круглое ядро, занимающее около '/4 цитоплазмы; жгутика нет, но перпендикулярно клеточной поверхности располагается палочковидный кинетопласт. Эти формы обитают в клетках ретикулоэндотелиальной системы человека и ряда млекопитающих (грызунов, собак, лис). Промастиготная форма удлинена — до 25 мкм, спереди находится жгутик, у основания которого хорошо виден такой же кинетопласт, что и в безжгутиковой стадии паразита. Обитает в пищеварительной системе москитов. Безжгутиковая форма, посеянная на культуральную среду, превращается в жгутиковую.

Лейшманиозы широко распространены в странах с тропическим и субтропическим климатом на всех континентах там, где обитают москиты. Они—типичные природно-очаговые заболевания (см. § 18.13). Природными резервуарами являются грызуны, дикие и домашние хищники. Заражение человека происходит при укусе инвазированными москитами.

По патогенному действию лейшманий заболевания, которые они вызывают, делят на три основные формы: кожный, слизисто-кожный и висцеральный лейшманиозы.

При кожном лейшманиозе очаги поражения находятся в коже. Это самый распространенный тип лейшманиоза, протекающий относительно доброкачественно. Возбудителями кожного лейшманиоза в Африке и Азии являются L. tropica, а в Западном полушарии — L. mexicana и ряд штаммов L. brasiliensis. Лейшманий L. tropica и L. mexicana вызывают на коже длительно не заживающие язвы на месте укусов москитами. Язвы заживают через несколько месяцев после образования, а на их месте на коже остаются глубокие рубцы. Некоторые формы L. brasiliensis способны распространяться по лимфатическим сосудам кожи с образованием многочисленных кожных язв в отдалении от мест укусов.

Слизисто-кожный лейшманиоз вызывается подвидом L. brasiliensis brasiliensis. При этой форме заболевания паразиты проникают из кожи по кровеносным сосудам в носоглотку, гортань, мягкое нёбо, половые органы, поселяются в макрофагах соединительных тканей этих органов и вызывают здесь деструктивные воспаления.

Висцеральный лейшманиоз вызывает L. donovani. Заболевание начинается через несколько месяцев или даже лет после заражения как системная инфекция. Паразиты размножаются в макрофагах и в моноцитах крови. Нарушаются функции печени, кроветворение. Очень велика интоксикация. При отсутствии лечения заболевание заканчивается смертью.

Лабораторная диагностика основана на микроскопировании мазков из кожных язв при кожном и слизисто-кожном лейшманиозах, пунктатов лимфатических узлов и костного мозга при висцеральном лейшманиозе. В окрашенных препаратах обнаруживается лейшманиальная форма паразитов как внутри клеток, так и внеклеточно. В сомнительных случаях производят посев материала, взятого от больного, на специальную культуральную среду, на которой лейшманий приобретают промастиготную форму, активно передвигаются и легко обнаруживаются при микроскопировании. Используют также и биологические пробы — заражение лабораторных грызунов.

Профилактика — в первую очередь, это борьба с переносчиками и уничтожение природных резервуаров (грызунов и бродячих собак), а также профилактические прививки.

  • Соотношение онто- и филогенеза.

Биогенетический закон Геккеля-Мюллера: каждое живое существо в своем индивидуальном развитии (онтогенез) повторяет в известной степени формы, пройденного его предками или его видом (филогенез).

Закон впервые сформулирован немецким естествоиспытателем Эрнстом Геккелем в 1866 г. Краткая формулировка закона звучит следующим образом: Онтогенез есть рекапитуляция филогенеза.

К примеру, развитие лягушки включает в себя стадию головастика, который по своему строению гораздо больше похож на рыб, чем на земноводных. Зародыши всех без исключения позвоночных животных также имеют на ранних стадиях развития жаберные щели, двухкамерное сердце и другие признаки, объединяющие их с рыбами.

Биогенетический закон часто рассматривается как подтверждение дарвиновской теории эволюции, хотя он вовсе не следует из классического эволюционного учения.

Например, если вид А2 возник путём эволюции из более древнего вида А1 через ряд переходных форм (A1 => => A2), то, в соответствии с классической теорией эволюции, возможен и обратный процесс, при котором вид А2 превращается в А1 — через прохождение тех же промежуточных стадий, но в обратном порядке.

Биогенетический закон (если понимать его буквально) "обратную эволюцию" запрещает: если вид А2 возник путём эволюции из вида А1, то в генетической памяти вида А2 должна сохраниться "запись" более древних генов, связанных с А1. В то же время, поскольку в генах А1 нет "записей", связанных с более поздним видом А2, то А1 не может происходить из А2.

Из биогенетического закона следует, например, что птицы или млекопитающие не могут эволюционным путём превратиться в пресмыкающихся, а затем в земноводных и рыб, ни при каком развитии событий.

  • Специфика действия естественного отбора.

Естественный отбор – это дифференциальное выживание и размножение особей, которые отличаются друг от друга генетически детерминированными признаками. Более приспособленные к данным условиям среды особи оставляют больше потомков, чем менее приспособленные. Мы можем измерить относительную приспособленность особи долей её потомков среди особей следующего поколения и, следовательно, частотой ее аллелей, которые вошли в генофонд следующего поколения.

Случайные изменения частоты аллеля вследствие ограниченной численности популяции. Дрейф генов связан с тем, что только часть генотипов в популяции участвует в процессе размножения. ДГ может приводить к случайной потере редких в популяции аллелей.

Дрейф генов - это случайное повышение частоты какого-то аллея в результате нескольких совпадающих событий, имеющих стохастический характер (соответствующий брак, большая семья, унаследование детьми патологических генов снова "подходящие" браки этих детей, хорошее материальное положение и т.п.). Это явление наблюдается для редко встречающихся признаков (или болезней), которые не отметаются отбором. Благодаря дрейфу генов патологические гены могут долго сохраняться в роду или в небольшой по размеру популяции, особенно в изоляте (небольшая популяция из 500 - 1500 человек, в которой практически отсутствует миграция).

Как уже было отмечено выше, естественный отбор не является единственным фактором, вызывающим изменения в частотах аллелей. Они также могут подвергаться влиянию случайных факторов, не вызывающих направленных изменений. Важным фактором, вызывающим случайные флуктуации в аллельных частотах, является случайный выбор гамет в процессе воспроизводства. Подобный выбор происходит потому, что суммарное число гамет в каждом данном поколении намного больше, нежели число взрослых особей, составляющих следующее поколение. Другими словами, только крошечная часть из общего пула гамет "воплощается" в следующем поколении.

  • Структура и виды РНК. Роль РНК в процессе реализации наследственной информации. Особенности экспрессии генетической иформации у про- и эукариот.

РНК,как и ДНК, представляет собой полинуклеотид. Структура нуклеотидов РНК с таковой ДНК, но имеются следующие отличия:

  1. Вместо дезоксирибозы в состав нуклеотидов РНК входит пятиуглеродный сахар- рибоза;

  2. Вместо азотистого основания тимина- урацил;

  3. Молекула РНК обычно представлена одной цепочкой (у некоторых вирусов- двумя);

В клетках существуют три типа РНК: информационная ,транспортная и рибосомальная.

Инфармационная РНК (и-РНК) представляет собой копию определённого участка ДНК и выполняет роль переносчика генетической информации от ДНК к месту синтеза белка (рибосомы) и непосредственно участвует в сборке его молекул.

Транспортные РНК (т-РНК)переносят аминокислоты из цитоплазмы в рибосомы.

Рибосомальная РНК (р-РНК) входит в состав рибосом. Считают, что р-РНК обеспечивает определённое пространственное взаиморасположение и-РНК и т-РНК.

Наследственная информация, записанная с помощью генетического кода, хранится в молекулах ДНК и размножается для того, чтобы обеспечить вновь образуемые клетки необходимыми «инструкциями» для их нормального развития и функционирования. Вместе с тем непосредственного участия в жизнеобеспечении клеток ДНК не принимает. Роль посредника, функцией которого является перевод наследственной информации, сохраняемой в ДНК, в рабочую форму, играют рибонуклеиновые кислоты — РНК.

В отличие от молекул ДНК рибонуклеиновые кислоты представлены одной полинуклеотидной цепью, которая состоит из четырех разновидностей нуклеотидов, содержащих сахар, рибозу, фосфат и одно из четырех азотистых оснований — аденин, гуанин, урацил или цитозин. РНК синтезируется на молекулах ДНК при помощи ферментов РНК-полимераз с соблюдением принципа комплементарности и антипараллельности, причем аденину ДНК в РНК комплементарен урацил. Все многообразие РНК, действующих в клетке, можно разделить на три основных вида: мРНК, тРНК, рРНК.

По химической организации материала наследственности и изменчивости эукариотические и прокариотические клетки принципиально не отличаются друг от друга. Генетический материал у них представлен ДНК. Общим для них является и принцип записи генетической информации, а также генетический код. Одни и те же аминокислоты шифруются у про- и эукариот одинаковыми кодонами. Принципиально одинаковым образом у названных типов клеток осуществляется и использование наследственной информации, хранящейся в ДНК. Сначала она транскрибируется в нуклеотидную последовательность молекулы мРНК, а затем транслируется в аминокислотную последовательность пептида на рибосомах с участием тРНК. Однако некоторые особенности организации наследственного материала, отличающие эукариотические клетки от прокариотических, обусловливают различия в использовании их генетической информации.

Наследственный материал прокариотической клетки содержится главным образом в единственной кольцевой молекуле ДНК. Она располагается непосредственно в цитоплазме клетки, где также находятся необходимые для экспрессии генов тРНК и ферменты, часть из которых заключена в рибосомах. Гены прокариот состоят целиком из кодирующих нуклеотидных последовательностей, реализующихся в ходе синтеза белков, тРНК или рРНК.

Наследственный материал эукариот больше по объему, чем у прокариот. Он расположен в основном в особых ядерных структурах —хромосомах, которые отделены от цитоплазмы ядерной оболочкой. Необходимый для синтеза белков аппарат, состоящий из рибосом, тРНК, набора аминокислот и ферментов, находится в цитоплазме клетки.

Значительные отличия имеются в молекулярной организации генов эукариотической клетки. В большинстве из них кодирующие последовательности экзоны прерываются интронными участками, которые не используются при синтезе т-РНК, р-РНК или пептидов. Количество таких участков варьирует в разных генах.. Эти участки удаляются из первично-транскрибируемой РНК, в связи с чем использование генетической информации в эукариотической клетке происходит несколько иначе. В прокариотической клетке, где наследственный материал и аппарат биосинтеза белка пространственно не разобщены, транскрипция и трансляция происходят почти одновременно. В эукариотической клетке эти два этапа не только пространственно отделены ядерной оболочкой, но и во времени их разделяют процессы созревания м-РНК, из которой должны быть удалены неинформативные последовательности.

Кроме указанных различий на каждом этапе экспрессии генетической информации можно отметить некоторые особенности течения этих процессов у про- и эукариот.

  • тип круглые черви...

Форма тела этих организмов удлиненно-веретенообразная или нитевидная. Кожно-мускульный мешок состоит из многослойной, плотной, эластичной и нерастяжимой кутикулы, гиподермы, представляющей собой единую цитоплазматическую массу, не разделенную на отдельные клетки и содержащую большое количество ядер, и одного слоя продольных гладких мышц. Кутикула выполняет в основном защитную функцию. Мышцы располагаются в виде двух продольных тяжей — на спинной и брюшной сторонах тела. Их поочередное сокращение обеспечивает энергичные сгибательные и разгибательные движения и быстрое перемещение тела в пространстве.

Пищеварительная система — в виде сквозной трубки с ротовым и анальным отверстиями. Нервная система представлена продольными тяжами, соединенными кольцевидными перемычками. Выделительная система в основе имеет протонефридиальное строение, но количество выделительных клеток исчисляется единицами. Круглые черви раздельнополы. Половая система построена в виде дифференцированных по длине трубок, часть которых функционирует как яичники или семенники, часть — как семяпроводы или яйцеводы, а часть — как органы, в которых накапливаются и сохраняются зрелые половые продукты. Все внутренние органы расположены в первичной полости тела, заполненной жидкостью, которая придает всему организму упругость и обеспечивает обмен веществ между органами.

Своеобразной особенностью круглых червей является то, что в состав их тела входит всегда определенное количество клеток. Это ограничивает их способность к росту и регенерации. Медицинское значение имеют представители только класса Собственно круглые черви.

  • тип плоские черви..

Плоские черви имеют тело, уплощенное в дорсовентральном направлении. Полость тела отсутствует, внутренние органы погружены в рыхлую соединительную ткань — паренхиму. Кожно-мускульный мешок состоит из покровной ткани — тегумента, который представляет собой многоядерную неклеточную структуру, и трех слоев гладких мышц — продольных, поперечных и дорсовентральных. Движения, осуществляемые ими, медленны и несовершенны. Нервная система состоит из нервных узлов на переднем конце тела, от которых кзади отходят продольные нервные тяжи. Пищеварительная система, если она имеется, построена из глотки и кишечника, который слепо замкнут. Непереваренные остатки пищи выделяются через рот. Половая система гермафродитна и построена очень сложно.

Выделение осуществляется с помощью протонефридиальной системы, состоящей из отдельных выделительных клеток — протонефридиев. Они способны захватывать продукты диссимиляции и транспортировать их по внутриклеточным каналам, проходящим в их длинных отростках. Продукты экскреции поступают в собирательные трубочки, а оттуда либо непосредственно, либо через мочевой пузырь — во внешнюю среду.

Виды, имеющие медицинское значение, представлены в двух классах: Сосальщики и Ленточные черви.

  • тип хордовые...

Тип хордовые подразделяется на три подтипа: бесчерепные, оболочники и позвоночные. Несмотря на большое многообразие видов, тело всех хордовых имеет общий план строения и состоит из головы, туловища, хвоста и конечностей. Главной особенностью представителей типа является наличие (хотя бы на одной из стадий индивидуального развития) хорды — гибкого, упругого тяжа, выполняющего роль осевого скелета. Хорда располагается над кишечником и формируется из энтодермы путем отщепления клеточного тяжа от спинной стороны кишечной трубки. У бесчерепных она существует на протяжении всей жизни, а у черепных вытесняется позвоночником, образующимся из мезодермы. Из остатков хорды формируются хрящевые прокладки между позвонками. Нервная система трубчатого типа у хордовых происходит из эктодермы, путем ее впячивания над хордомезодермальным зачатком и отшнуровывания образовавшейся толстостенной трубки, передний конец которой расширяется и формирует у эволюционно продвинутых животных головной мозг. Представители типа имеют жаберные щели, пронизывающие стенки глотки, соединяя ее полость с внешней средой. У водных форм они существуют в течение всей жизни, и над ними закладываются жабры; у наземных зачатки жаберных щелей присутствуют только на стадии зародыша, впоследствии зарастая, у взрослых животных органами дыхания являются легкие. В расположении органов у хордовых также есть ряд особенностей: сердце находится на брюшной стороне, под пищеварительным трактом, а нервная трубка над ним. Для хордовых, кроме того, характерна двусторонняя симметрия тела, наличие вторичного рта, метамерии (однако не столь выраженной, как у беспозвоночных) и вторичной полости тела — целома.

  • тип членистоногие...

Тип Членистоногие содержит более 1,5 млн. видов. Он характеризуется наличием хитинового покрова — скелетного и защитного образования — и членистых конечностей. Тело состоит из сегментов, сливающихся в три отдела: голову, грудь и брюшко. В некоторых группах членистоногих голова и грудь представляют собой единое образование — головогрудь, иногда тело вообще не расчленено. На голове расположены органы чувств и ротовой аппарат — видоизмененные конечности. В пищеварительной системе имеются сложные железы. Органы дыхания в зависимости от систематического положения и образа жизни жабры, мешковидные легкие или трахеи. Кровеносная система незамкнутая, сердце находится на спинной стороне. На брюшной стороне — нервная цепочка из частично слившихся ганглиев, среди которых самые крупные — подглоточный и надглоточный — расположены на переднем конце тела.

Наибольшее медицинское значение имеют классы Паукообразные и Насекомые. В этих классах встречаются временные и постоянные паразиты, переносчики и возбудители инфекционных и паразитарных заболеваний. В классе Ракообразные встречаются только отдельные виды — промежуточные хозяева некоторых гельминтов.

  • Тип «Простейшие» . Классификация. Характерные черты организации. Значение для медицины.

К типу Простейшие относят организмы, тело которых состоит из одной клетки, функционирующей, однако, как целый организм. Клетки простейших способны к самостоятельному питанию, передвижению, защите от врагов и к переживанию неблагоприятных условий. В строении простейших обнаруживаются как все особенности эукарио-тических клеток, так и специфические органеллы, обеспечивающие выполнение организменных функций.

Питание простейших происходит с помощью пищеварительных вакуолей, содержащих пищеварительные ферменты и связанных по происхождению с лизосомами. Оно осуществляется за счет фаго- или пиноцитоза. Остатки непереваренной пищи выбрасываются наружу. Некоторые простейшие содержат хлоропласты и способны питаться за счет фотосинтеза.

Большинство простейших имеют органеллы передвижения: жгутики, реснички и псевдоподии (временные подвижные выросты цитоплазмы). Формы органелл движения лежат в основе систематики простейших.

Пресноводные свободноживущие простейшие имеют органеллы, регулирующие водно-солевой баланс, — сократительные вакуоли. Периодически они сокращаются и выделяют во внешнюю среду избытки воды и жидкие продукты диссимиляции. Морские и паразитические простейшие, живущие в среде с высокой концентрацией солей, могут не иметь сократительных вакуолей.

Размножение простейших осуществляется обычно разными формами деления — разновидностями митоза. Характерен также половой процесс: в виде слияния клеток — копуляция — ил» обмен наследственным материалом — конъюгация.

Большинство простейших имеют одно ядро, но встречаются и многоядерные формы. Ядра некоторых простейших характеризуются полиплоидностью.

В жизненном цикле большинства простейших выделяют стадию трофозоита — активно питающуюся и перемещающуюся форму — и стадию цисты. Циста — неподвижная форма жизненного цикла простейших, покрытая плотной оболочкой и характеризующаяся резко замедленным обменом веществ. Паразитические простейшие инцисти-руются, попадая во внешнюю среду. В таком состоянии они способны переноситься ветром, водой и животными на огромные расстояния и таким образом расселяться. При попадании цисты в благоприятные условия происходит эксцистирование и простейшее начинает активно функционировать в состоянии трофозоита.

В настоящее время известно около 10 000 видов простейших. Основными средами их обитания являются вода и почва. Многие простейшие перешли к паразитическому или к комменсальному образу жизни.

Болезни, вызываемые простейшими, называют протозойными. Большинство простейших имеют время генерации от 6 до 24 ч. В связи с этим их размножение в организме хозяина обычно сопровождается экспоненциальным увеличением размеров их популяций до тех пор, пока этот процесс не замедлится или не остановится защитными механизмами хозяина или другими внешними факторами. Это означает, что один паразитический организм в принципе способен, размножившись, привести к гибели своего хозяина. В этом плане простейшие — возбудители заболеваний — сходны с возбудителями инфекционных болезней, например с патогенными бактериями и вирусами.

Медицинское значение имеют простейшие, относящиеся к классам Саркодовые, Жгутиковые, Инфузории и Споровики.

  • токсоплазма. системат положение...

класс споровики. отряд кокцидий (coccidia)

на стадии мерозоита имеет фформу апельсиновой дольки.на переднем конце находится коноид, в стенке которого нах спирально закрученные фибриллы. сичтается, что коноид выполняет опорную функцию. от коноида отходят роптрии, предполагается, что они содержат в-ва, облегчающие проникновение паразита в клетку. питание осуществляется через микропоры на поверхности тела.

жизненный цикл - окончательный хозяин - кошка, промежуточный - млекопитающие и человек.

в кишечник попадают ооцисты, содержащие спорозоиты, которые попадают в клетки кишечника и начинают размножаться делением надвое.

далее образуется циста, затем идет превращение в шизонты - мерозоиты - незрелые половые формы.

ооцисты выделяются с испражнениями, мочой, через носовую слизь, слюну и т.д. токсоплазм отличает широкий круг животных, служащих промежуточным хозяином. многие из них являются пищей для окончательного. человек заражается от домашних животных, прежде всего от кошек.

профилактика. личная профилактика сводится к личной гигиене при общении с домашними животными.

  • Трансмиссивные болезни (облигатные и факультативные, антропонозы, зоонозы, антропонозоонозы). Трансмиссивные болезни с природной очаговостью. Компоненты природного очага.

Большая группа паразитарных и инфекционных заболеваний характеризуется природной очаговостью. Для них характерны следующие признаки: 1) возбудители циркулируют в природе от одного животного к другому независимо от человека; 2) резервуаром возбудителя служат дикие животные; 3) болезни распространены не повсеместно, а на ограниченной территории с определенным ландшафтом, климатическими факторами и биогеоценозами.

Компонентами природного очага являются: 1) возбудитель; 2) восприимчивые к возбудителю животные — резервуары: 3) соответствующий комплекс природно-климатических условий, в котором существует данный биогеоценоз. Особую группу природно-очаговых заболеваний составляют трансмиссивные болезни, такие, как лейшманиоз, трипаносомоз, клещевой энцефалит и т.д. Поэтому обязательным компонентом природного очага трансмиссивного заболевания является также наличие переносчика. Структура такого очага приведена на рис. 18.8.

Некоторые природно-очаговые заболевания характеризуются эндемизмом, т.е. встречаемостью на строго ограниченных территориях. Это связано с тем, что возбудители соответствующих заболеваний, их промежуточные хозяева, животные-резервуары или переносчики встречаются только в определенных биогеоценозах. Так, только в отдельных районах Японии расселены четыре вида легочных сосальщиков из р. Paragonimus (см. разд. 20.1.1.3). Расселению их препятствует узкая специфичность в отношении промежуточных хозяев, которые обитают только в некоторых водоемах Японии, а природным резервуаром являются такие эндемичные виды животных, как японская луговая мышь или японская куница.

Вирусы некоторых форм геморрагической лихорадки встречаются только в определенных зонах Восточной Африки, потому что здесь расположен ареал их специфических переносчиков — клещей из р. АтЫуотта (рис. 18.9).

Хорошо известными являются природно-очаговые заболевания, вызываемые лентецами р. Diphyllobothrium, распространенными в некоторых районах Сибири. Так, на оз. Байкал известно несколько видов ленточных червей, которые обычно паразитируют у чаек, заражающихся при проглатывании инвазированной рыбы, например байкальского омуля. Рыбы заражаются при поедании рачков, а те в свою очередь становятся промежуточными хозяевами гельминтов от фекалий птиц, попадающих в воду. Съев инвазированную рыбу, заболеть дифиллоботриозом

Абсолютное же большинство природно-очаговых болезней поражает человека только в случае попадания его в соответствующий очаг (на охоте, рыбной ловле, в туристических походах, в геологических партиях и т.д.) при условиях его восприимчивости к ним. Так, таежным энцефалитом человек заражается при укусе инфицированным клещом, а описторхозом — съев недостаточно термически обработанную рыбу с личинками кошачьего сосальщика.

Профилактика природно-очаговых заболеваний представляет особые сложности. В связи с тем, что в циркуляцию возбудителя бывает включено большое количество хозяев, а часто и переносчиков, разрушение целых биогеоценотических комплексов, возникших в результате эволюционного процесса, экологически неразумно, вредно и даже технически невозможно. Лишь в тех случаях, если очаги являются небольшими и хорошо изученными, возможно комплексное преобразование таких биогеоценозов в направлении, исключающем циркуляцию возбудителя. Так, рекультивация опустыненных ландшафтов с созданием на их месте орошаемых садоводческих хозяйств, проводящаяся на фоне борьбы с пустынными грызунами и москитами, может резко снизить заболеваемость населения лейшманиозами. В большинстве же случаев природно-очаговых болезней профилактика их должна быть направлена в первую очередь на индивидуальную защиту (предотвращение от укусов кровососущими членистоногими, термическая обработка пищевых продуктов и т.д.) в соответствии с путями циркуляции в природе конкретных возбудителей.

  • трихинелла....

возбудитель трихинеллеза— мелкий гельминт длиной до 4 мм. Распространен очень широко, на всех континентах и во всех природно-климатических зонах. Этому благоприятствуют такие особенности биологии паразита, как способность личинок переживать неблагоприятные условия на протяжении десятков лет. Хозяевами трихинеллы могут быть различные хищные и всеядные млекопитающие, а также человек. Распространение трихинелл происходит обычно при поедании животными друг друга.

Человек заражается, поедая мясо зараженных животных, чаще всего свиней. Проглоченные личинки в кишечнике быстро достигают половой зрелости. Оплодотворенные самки рождают живых личинок, которые пробуравливаются через стенку кишечника и, транспортируясь кровью, оседают в поперечно-полосатых мышцах: чаще всего в диафрагме, межреберных, дельтовидных. Здесь они после разрушения части мышечных волокон спирально скручиваются и инкапсулируются.

При попадании трихинелл в ослабленный организм возможно развитие первого поколения личинок не в мышцах хозяина, а в ворсинках его кишечника, после разрушения которых личинки вновь возвращаются в просвет кишки, достигают там половой зрелости и размножаются. Следующее поколение личинок уже оседает в мышцах хозяина. Этим достигается резкое увеличение размеров популяции паразита, которые в обычных случаях размножаются у одного хозяина лишь один раз, и соответственно резкое утяжеление заболевания, часто приводящее к смерти.

Личинки трихинелл после гибели хозяина сохраняют жизнеспособность даже после разложения его трупа. В пищеварительной системе трупоядных наземных и даже водных животных — жуков-мертвоедов, почвенных червей, мелких ракообразных, рыб, хищных птиц и чаек — личинки сохраняют жизнеспособность в течение нескольких дней. Перечисленные животные выступают в цикле развития паразитов как транспортные хозяева и способны передавать возбудителя по цепи питания до тех пор, пока личинки не попадут в организм хозяина, в котором возможно нормальное развитие паразита. Сложными цепями питания с передачей личинок транспортными хозяевами обеспечивается фактически всесветное распространение трихинеллы и существование таких природных очагов трихинеллеза, как очаги даже в зоне арктических пустынь.

Известно, что 67% ездовых собак в Гренландии и 50% белых медведей о. Шпицберген, многие тюлени и даже некоторые китообразные поражены трихинеллезом. Основной источник питания этих животных — рыба, морские беспозвоночные, яйца и птенцы морских птиц и т. д. Эти животные становятся транспортными хозяевами трихинеллы после того, как разлагающиеся трупы и помет птиц оказываются в воде и личинки паразита попадают в организм водных ракообразных, которыми питаются более крупные беспозвоночные и рыбы. Поедая их, млекопитающие постепенно накапливают в организме огромное количество трихинелл, становясь опасным источником заражения человека. Свиньи как наиболее частый источник инвазий человека заражаются, поедая не только крыс и мышей, но и насекомых, червей, рыбу, трупы и помет птиц, в которых сохраняются жизнеспособные личинки.

Патогенное действие трихинеллы включает как общеаллергические явления, так и нарушение функций мышц.

Диагноз основывается на данных анамнеза — употребление мяса диких животных и не проверенной ветеринарной службой свинины, а также на результатах биопсии мышц.

Личная профилактика — тщательная термическая обработка свинины и особенно мяса диких животных. Общественная профилактика — санитарный надзор в свиноводстве, проверка свинины на торговых точках и на предприятиях общественного питания.

  • фенотип как результат реализации генотипа в конкретных условиях среды. среда 1 и 2 порядка. модификации и их характеристики. простые и сложные признаки. норма реакции признака.

фенотип - совокупность всех признаков и свойств особи, формирующихся в процессе взаимодействия её генетич. структуры (генотипа) и внешней, по отношению к ней, среды. Термин «Ф.»введён В. Иогансеиом в 1903. В Ф. не реализуются все генотипич. возможности, и он является лишь частным случаем реализации генотипа в конкретных условиях. Поэтому даже между однояйцовыми близнецами, имеющими полностью идентичные генотипы, можно выявить заметные фенотипич. различия, если они развивались в разных условиях. Однозначного соответствия между генотипом и Ф. нет: изменения генотипа не всегда сопровождаются изменением Ф., а изменения Ф. не обязательно связаны с изменениями генотипа. В процессе микроэволюции отбор идёт по Ф. особей. Тем самым в популяциях сохраняются особи либо с широкой нормой реакции, пределы к-рой определяются генотипом, либо особи нужного Ф., определяемого генотипом достаточно жёстко. При наличии в популяции особей разного генотипа отбор по Ф. приводит опосредованно к отбору по генотипу. При отсутствии генотипич. изменчивости отбор по Ф. не даёт результатов, что было продемонстрировано экспериментально В. Иогансеном в опытах по отбору в чистых линиях.

модификация - фенотипическое изменение , которое не выходит за пределы "нормы реакции" и вызавается известным фактором внешней среды.

  • Филогенез пищеварительной и дыхательной систем хордовых животных. Филогенетические пороки.

Действительно, только у хордовых дыхательная система развивается на базе пищеварительной и на первых этапах эволюции функционирует совместно с ней. Так, у ланцетника, сохранившего в значительной степени черты организации предковых форм, специализированных органов дыхания нет, а дыхательную функцию выполняет глотка — передняя часть пищеварительной трубки, пронизанная сквозными отверстиями — жаберными щелями, главной функцией которых является фильтрация воды. Челюстного аппарата у ланцетника нет, и активно питаться он не может. Поэтому источником его питания является взвесь органических частиц в воде, которые задерживаются жаберными перегородками, прилипая к слизи, обильно выделяемой железистыми клетками глотки. Постоянный ток свежей воды через глотку способствует газообмену в кровеносных сосудах, расположенных в жаберных перегородках. На капилляры эти сосуды не распадаются, что свидетельствует о второстепенности дыхательной функции глотки.

У более высокоорганизованных хордовых начиная с рыб пищеварительная и дыхательная функции осуществляются специализированными системами, объединенными анатомически общей полостью рта и глотки, а также развитием из общего энтодермального зачатка.

Тесная связь обеих систем в филогенезе определяется в первую очередь их топографическими и динамическими координациями, а развитие в онтогенезе — морфогенетическими и эргонтическими корреляциями. Пищеварительная и дыхательная системы хордовых в эмбриогенезе закладываются вначале в виде прямой трубки, подразделяющейся на три участка. Переднюю ее часть, начинающуюся ротовым отверстием и заканчивающуюся переходом в глотку, называют stomodeum. Слизистая оболочка, выстилающая этот участок, эктодермального происхождения и в развитии связана с кожным эпидермисом и его производными. Средняя часть кишки начинается глоткой и заканчивается в том месте, где ее энтодермальная слизистая оболочка контактирует с эктодермальной слизистой оболочкой задней кишки, или proctodeum.

Рассмотрим вначале эволюцию ротовой полости и ее производных. У бесчерепных ротовая полость окружена предротовой воронкой со щупальцами и частично выстлана мерцательным эпителием, который вместе с таким же эпителием глотки создает постоянный ток воды в кишечную трубку, несущую пищевые частицы и кислород. Ротовое отверстие позвоночных окружено кожными складками — губами, которые становятся подвижными только у сумчатых и плацентарных млекопитающих в связи со вскармливанием детенышей молоком.

Крыша ротовой полости образована у рыб и земноводных основанием мозгового черепа, которое является первичным твердым нёбом. Хоаны земноводных открываются в их ротовую полость сразу позади альвеолярной дуги верхней челюсти. У пресмыкающихся объем ротовой полости увеличивается, и на верхнечелюстных и нёбных костях появляются горизонтальные складки, частично разделяющие ее на верхний, дыхательный, отдел и вторичную ротовую полость. Хоаны при этом несколько смещаются кзади. У млекопитающих наблюдается срастание этих складок по средней линии таким образом, что возникает сплошное вторичное твердое нёбо, полностью отделяющее друг от друга ротовую полость и полость носа. Хоаны при этом открываются в носоглотку. Этим достигается независимость функций органов ротовой полости от процесса дыхания.

Глотка — орган, выполняющий у всех хордовых две функции: дыхательную и пищеварительную. У ланцетника она пронизана большим количеством жаберных щелей (более 150 пар). У рыб жаберные щели в количестве 5—7 закладываются как слепые парные выросты глотки — жаберные мешки. Навстречу им выпячиваются кожные покровы — жаберные карманы. В месте их соприкосновения происходит прорыв тканей эктодермы кожи и энтодермы глотки и возникают сквозные жаберные щели.

Кишечная трубка претерпевает в ходе филогенеза следующие прогрессивные преобразования: увеличение общей длины, дифференцировку на отделы и образование крупных многоклеточных желез.

Если длина этого отдела пищеварительной трубки ланцетника составляет примерно 1/3 длины тела, то у млекопитающих возможно превышение ее длины по отношению к телу в 10 раз и более. У рыб за глоткой следует короткий пищевод, затем желудок, слабо от него отграниченный. В кишечнике выделяются тонкий и толстый отделы, последний открывается анусом во внешнюю среду. В отличие от ланцетника у рыб хорошо развита печень, снабженная желчным пузырем. Поджелудочная железа у различных рыб построена по-разному. Единственное отличие пищеварительной трубки земноводных от трубки рыб — ее удлинение и впадение толстой кишки в клоаку. Существенной особенностью пищеварительной трубки пресмыкающихся является возникновение в ней слепой кишки.

Задняя кишка плацентарных млекопитающих дифференцирована, клоака отсутствует и прямая кишка заканчивается анусом.

Органы дыхания

Жабры — наиболее ранние специализированные органы дыхания, появляющиеся среди хордовых впервые у рыб. Они представляют собой тонкие складки слизистой оболочки глотки, лежащие на жаберных дугах, снабжаемые венозной кровью через жаберные артерии и распадающиеся здесь на капилляры.

Позади последней жаберной дуги у кистеперых рыб за счет выпячивания вентральной стороны глотки формируется парное образование — плавательный пузырь, который выполняет в первую очередь гидростатические функции, уравновешивая тело рыбы в толще воды. У земноводных, связанных по происхождению с кистеперыми рыбами, в личиночном состоянии функционируют жабры, а во взрослом — органами дыхания становятся легкие Пресмыкающиеся, вышедшие на сушу окончательно, имеют как верхние дыхательные пути (не полностью отграниченную от ротовой полости полость носа), так и нижние — гортань, трахею и бронхи. Впервые появляется диафрагма, которая в дыхании принимает скорее пассивное участие, так как она либо лишена мышечных элементов, либо разделяет грудную и брюшную полости не полностью. У млекопитающих дыхательные пути, как и у предков, выстланы мерцательным эпителием. Они полностью отделены от пищеварительной системы и только перекрещиваются с ней в глотке. Бронхи многократно разветвляются, вплоть до бронхиол, ведущих в альвеолы — легочные пузырьки

  • Филогенез покровов тела и опорно-двигательной системы хордовых животных. Филогенетические пороки.

Кожные покровы хордовых имеют эктодермальное(эпидермис) и мезлдермальное(дерма) происхождение.

Функции кожи:

  1. Защитная

  2. Терморегуляционная

  3. Орган осязания

  4. Выделительная

  5. Обменная

  6. Дыхательная

Основные направления эволюции покровов хордовых:

    1. Разделение покровов на эпидермис(наружный) и дерму(внутренний)

    2. Дифференцировка эпидермиса и дермы на слои

    3. Дифференцировка производных кожи(роговых и железистых)

У ланцетника эпидермис однослойный, цилиндрический, имеет железистые клетки выделяющие слизь. Дерма(кориум) -тонкий слой неоформленной соединительной ткани.

Рыбы: эпидермис многослойный, его нижний слой ростковый . Дерма плотная ,имеет волокна, сосуды и нервы. Производные кожи -одноклеточные слизистые желез , плакоидная или костная чешуя.

Рептилии имеют тонкую гладкую кожу без чешуи, принимающую участие в газообмене. Этому способствует наличие большого количества многоклеточных слизистых желез, секрет которых постоянно увлажняет покровы и обладает бактерицидными свойствами.

Млекопитающие: хорошо развиты эпидермис и дерма, появляется подкожно-жировая клетчатка. Эпидермис состоит из 5 слоев. Кожные железы: потовые, сальные, млечные, пахучие. Производные рогового слоя: волосы, рога, когти, копыта. В дерме есть сетчатый и сосочковой слои. Сосочковой слой содержит рецепторы кровеносные и лимфатические сосуды.

ОПОРНО-ДВИГАТЕЛЬНЫЙ АППАРАТ

Скелет позвоночных имеет мезодермальное происхождение и состоит из 3 отделов:

  1. Осевой скелет

  2. Скелет головы(череп)

  3. скелет конечностей и их поясов

Функции скелета:

    1. опорная

    2. двигательная

    3. защитная

    4. кроветворная

    5. обменная( депо солей P и Ca)

Направления эволюции осевого скелета:

  1. Замена хорды позвоночником, хрящевой ткани- костной

  2. Дифференцировка позвоночника на отделы(от 2х-до 5)

  3. Увеличение числа позвонков в отделах

  4. Появление грудной клетки

У рыб только два отдела позвоночника: туловищный и хвостовой. Это связано с перемещением их в воде за счет изгибов тела.

Земноводные приобретают также шейный и крестцовый отделы, представленные каждый одним позвонком. Первый обеспечивает большую подвижность головы, а второй — опору задним конечностям.

У пресмыкающихся удлиняется шейный отдел позвоночника, первые два позвонка которого подвижно соединены с черепом и обеспечивают большую подвижность головы. Появляется поясничный отдел, еще слабо отграниченный от грудного, а крестец состоит уже из двух позвонков.

Млекопитающие характеризуются стабильным количеством позвонков в шейном отделе, равным 7. В связи с большим значением в движении задних конечностей крестец образован 5—10 позвонками. Поясничный и грудной отделы четко отграничены друг от друга.

У рыб все туловищные позвонки несут ребра, не срастающиеся друг с другом и с грудиной. Они придают телу устойчивую форму и обеспечивают опору мышцам, изгибающим тело в горизонтальной плоскости. Эта функция ребер сохраняется у всех позвоночных, совершающих змеевидные движения,— у хвостатых земноводных и пресмыкающихся , поэтому у них ребра также располагаются на всех позвонках, кроме хвостовых.

У пресмыкающихся часть ребер грудного отдела срастается с грудиной, формируя грудную клетку, а у млекопитающих в состав грудной клетки входит 12—13 пар ребер.

Соседние файлы в предмете Биология