
- •Содержание
- •1.1. Базовые определения и подходы к описанию экосферы города
- •1.2. Анализ информационной составляющей городской системы управления качеством окружающей среды
- •2. Модели для оценки и прогноза состояния и уровня загрязнения атмосферы
- •2.1. Общие сведения о моделях
- •2.1.1. Поведение потока, выбрасываемого в атмосферу
- •2.1.2. Показатели турбулентности
- •2.1.3. Характеристики источников выбросов
- •2.1.4. Методы оценки дисперсии
- •2.2. Классификация существующих моделей
- •2.5. Модель Института экспериментальной метеорологии
- •2.6. Трехмерные модели переноса и диффузии примеси и их упрощенные варианты
- •2.7. Аэродинамическое моделирование
- •2.8. Перспективы развития моделей в соответствии с рекомендациями МАГАТЭ
- •2.9. Районирование зоны загрязнения по степени опасности
- •3. Примеры численного моделирования
- •3.1. Общая постановка задачи
- •3.2. Двумерная стационарная аналитическая модель
- •3.2.1. Аналитическая модель
- •3.2.2. Алгоритм численной реализации аналитической модели и результаты моделирования
- •3.3. Двумерная численная модель
- •3.3.1. Формулировка стационарной задачи
- •3.3.2. Общая схема численного решения задач
- •3.3.3. Аппроксимация
- •3.3.4. Организация итераций
- •3.3.5. Выбор итерационного параметра
- •3.3.6. Дискретная модель для диффузии и поглощения
- •3.3.7. Способ решения дискретных уравнений диффузии
- •3.3.8. Организация метода Федоренко
- •3.3.9. Дискретная модель для оператора переноса
- •3.3.10. Метод решения дискретного уравнения переноса
- •3.3.11. Сопоставление результатов численных расчетов с известными аналитическими моделями
- •4. Проблемы программной реализации прикладных моделей
- •5. Примеры прикладных программных комплексов
- •5.1. Программный комплекс “МОНИТОР”
- •5.2. Студенческий проект «Экосфера»
- •Заключение
- •Контрольные вопросы
ности параметров, описывающих синоптическую ситуацию. Прогностическая система включает в себя: прием и обработку метеорологической информации из каналов связи, контроль и корректировку данных, архивирование и собственно прогноз.
Список литературы
1.Руководство по организации контроля состояния природной среды в районе расположения АЭС / Под ред. К.П. Махонько. Л.: Гидрометео-
издат, 1990, 264 с.
2.Techniques and decision making in the assessment of off-site consequences of an accident in a nuclear facility / Safety series, N.86, International Atomic Energy Agency. Vienne. 1987. 185 p.
2.2. Классификация существующих моделей
Процессы распространения примесей в атмосфере представляют чрезвычайный интерес для многих видов человеческой деятельности. В 1950- 1960-е годы в исследования в этой области были вложены огромные средства. Заказ формировался, по-видимому, военными задачами и безопасностью АЭС. Были выполнены крупномасштабные натурные измерения как в США, так и в СССР. По их результатам были созданы эмпирические модели. Значительные усилия были затрачены также на развитие теории диффузии примеси в атмосфере.
Позднее интерес к этим исследованиям объяснялся уже скорее задачами экологии. В настоящее время, по крайней мере, в России в качестве важнейшего приложения результатов подобных исследований являются задачи прогнозирования заражения территории при аварийных выбросах ядовитых веществ.
31
Несмотря на обширность проведенных исследований, до настоящего времени нет сколько-нибудь общепринятой модели распространения примесей в атмосфере. Это объективно обусловлено сложностью и разнообразием процессов, а также субъективными факторами. Поэтому существует множество моделей самых различных типов. Прежде чем дать их обзор, необходимо ввести хотя бы простейшую классификацию моделей.
Главным определяющим модели признаком является их эмпирический или теоретический характер. Строго говоря, во всех моделях присутствуют оба начала, но в одних - это простейшие и не слишком обоснованные рассуждения при тщательном достижении соответствия экспериментальным данным, а в других - фундаментальные уравнения теории диффузии в турбулентных средах со сложным математическим аппаратом и огромным объемом вычислений на ЭВМ. Классическими образцами эмпирических моделей являются модели, созданные Паскуиллом и Гиффордом [2] и в Институте экспериментальной метеорологии [4].
По сути эмпирическими являются и модели, созданные в ГГО [1],[3]. Хотя при изложении их научных оснований [10] и используются достаточно общие представления о пространственной турбулентной диффузии, они при конкретизации переходят в формулы, аналогичные [2].
Именно эти эмпирические модели [2], [3], [4] или близкие к [2] являются утвержденными в разных странах на государственном уровне для практического использования. Фундаментальные теоретические модели в настоящее время используются только для научных целей, они позволяют только качественно объяснить некоторые наблюдаемые эффекты.
Наибольший интерес представляют модели, которые мы будем условно называть полуэмпирическими. Примером является модель, созданная в Институте экспериментальной метеорологии [4]. В таких моделях эмпирика дополнена довольно развитым математическим аппаратом, что позволяет анализировать достаточно сложные ситуации, значительно отличаю-
32
щиеся от исходных экспериментов, и фактически объединять результаты разнородных экспериментов, например метеорологических и диффузионных. В этом главное отличие от чисто эмпирических моделей, которые описывают весь процесс в целом: на входе - параметры выброса, на выходе - концентрация в данной точке пространства.
Примером такой модели является [11]. В этой модели в явном виде учитывается распределение ветра и коэффициента диффузии по высоте. Это сделано для того чтобы добиться соответствия диффузионных моделей эмпирическим. Особую роль такой учет играет при интересующем нас моделировании распространения примесей в приземном слое, то есть на высотах менее 50 метров. Общим недостатком такого рода моделей является их преимущественно исследовательская направленность, в связи с чем они не вполне доведены до практического использования. Относительно современного состояния модели [11] такое утверждение сделано в [4].
Вторым признаком для классификации является богатство учитываемых в модели физических процессов. В эмпирических моделях зачастую физика процессов почти не учитывается или сильно искажается. Так, эмпирические модели с гауссовым распределением концентрации в струе и близким к линейному законом расширения струи (то есть практически все эмпирические модели) не могут быть проинтерпретированы как диффузионные.
В отечественной монографии [10] показана возможность такой интерпретации при учете еще одного физического процесса - изменчивости ветра за время измерения концентрации. Ведущие зарубежные специалисты, читавшие курс лекций [12], в общей дискуссии смогли указать как причину реального линейного расширения струи, противоречащего теории диффузии, только поворот ветра с высотой. По-видимому, важны оба эффекта и оба не связаны собственно с диффузией. Но эта разница представлений о
33
физических процессах ярко демонстрирует разрыв между эмпирикой и теорией.
В более сложных моделях учитывают законы движения воздуха и диффузии, причем используют очень разные наборы упрощающих предположений. Почти все модели распространения дополняются учетом специальных процессов, таких как начальный подъем нагретых выбросов, оседание тяжелых частиц, вымывание примесей осадками. Для задач экологии важную роль играет также учет химических превращений веществ в процессе распространения, в частности модели фотохимического смога. Но эти вопросы не главные при авариях. Для прогноза, необходимого при авариях, необходимо явно разделить модель воздушных течений вблизи места аварии и модель распространения примеси.
Третьим признаком для классификации является тип используемого математического аппарата. В значительной мере он связан с первым признаком и еще более непосредственно - со вторым. Эмпирические модели используют явные формулы, которые при реализации на ЭВМ не вызывают никаких затруднений, трудоемким является только ввод и вывод информации. Полуэмпирические модели содержат уже процедуры численного решения дифференциальных уравнений в частных производных. Теоретические же модели чрезвычайно разнообразны по аппарату: от теории подобия и чисто аналитических выкладок [5] до численного решения уравнений мезометеорологии с диффузией и трансформацией примесей как разностными методами [6], [7], так и методом Монте-Карло [8]. Особо следует отметить использование аппарата теории вероятности, который был основным у классиков [5], но в современных моделях играет весьма скромную роль. Вместе с тем в [9] убедительно показано, что вероятностный характер процессов принципиален для всех моделей, и в особенности для наиболее интересных для нас случаев кратковременных выбросов в атмосферу. Этот вопрос мы рассмотрим отдельно.
34
Модели можно разделить также на стационарные (таких большинство среди эмпирических моделей) и нестационарные.
Под моделированием мы понимаем в первую очередь математическое моделирование, но применяется и моделирование в лабораторных установках, когда макет зданий или территории обдувают в аэродинамической трубе с источником примеси. Возможности использования таких физических моделей обсудим ниже.
Следует сказать, что различные модели используют весьма разнообразные исходные данные, и зачастую отсутствие необходимых метеорологических данных диктует применение простейших грубых моделей. Альтернативой было бы численное решение мезометеорологической задачи, но практически этот путь пока не доступен как из-за сложности задачи, так и из-за ограниченности ресурсов ЭВМ.
Список литературы
1.Методика прогнозирования масштабов заражения сильнодействующими ядовитыми веществами при авариях (разрушениях) на химически опасных объектах и транспорте. Руководящий документ РД 52.04.25390. Л.: Гидрометеоиздат, 1991. 23 с.
2.Учет дисперсионных параметров атмосферы при выборе площадок для атомных электростанций. Руководство по безопасности АЭС. Международное агентство по атомной энергии. Вена, 1980. 106 с.
3.Методика расчета концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий. ОНД-86. Л.: Гидрометеоиздат, 1987. 93 с.
4.Бызова Н.Л., Гаргер Е.К., Иванов В.Н. Экспериментальные исследования атмосферной диффузии и расчет распространения примеси. Л.: Гидрометеоиздат, 1991.
35
5.Монин А.С., Яглом А.М. Статистическая гидромеханика. Механика турбулентности. М.: Наука, 1965. 720 с.
6.Пененко В.В., Алоян А.Е. Модели и методы для задач охраны окружающей среды. Новосибирск: Наука. Сиб.отд-ние, 1985. 256 с.
7.Бутусов О.Б., Татарников В.А. Трехмерная математическая модель атмосферного переноса промышленных загрязнений от точечных источников в условиях городской среды //Информационные проблемы изучения биосферы: Геоэконинформационные центры РАН. Научное совещание по проблемам биосферы. М. 1992. С. 91 -96.
8.Пащенко С.Э., Сабельфельд К.К. Атмосферный и техногенный аэрозоль (кинетические, электронно-зондовые и численные методы иссле-
дования): В 2 ч. Новосибирск. Ч. 1. 1992 . 190 с. Ч. 2. 1992 .118 с.
9.Бородулин А.И., Майстренко Г.М., Чалдин Б.М. Статистическое описание распространения аэрозолей в атмосфере: метод и приложения. Новосибирск: Изд-во Новосибирского ун-та. 1992. 123 с.
10.Берлянд М.Е. Прогноз и регулирование загрязнения атмосферы. Л.: Гидрометеоиздат, 1985. 272 с.
11.Динамическая метеорология. Л.: Гидрометеоиздат, 1967. 607 с.
12.Атмосферная турбулентность и моделирование распространения примесей. /Под ред. Ф.Т.М. Ньюстадта и Х.Ван Дона. Л.: Гидрометеоиздат. 1985. 351 с.
2.3.Штатная модель служб ГО и возможности ее совершенствования.
Внастоящее время для использования службами ГО и ЧС страны регламентирована методика [1].
При разработке этого руководящего документа использованы теоретические и эмпирические модели распространения примесей в атмосфере, созданные в одном из ведущих в этой области научно-исследовательских
36
учреждений страны - ГГО им. А.И. Воейкова. Однако это не означает, что в предложенной методике полно учтены последние достижения в этой области, поскольку перед создателями был поставлен ряд ограничений, главным из которых является простота методов, достаточная, чтобы их можно было реализовать "вручную", без привлечения ЭВМ. В этих рамках и при наличии только простейших метеорологических наблюдений задача, повидимому, решена оптимально.
Однако в настоящее время стало возможным оперативное использование службами ГО персональных ЭВМ, надежность и быстродействие которых позволяют реализовать гораздо более сложные модели. В связи с этим для методики [1] можно указать направления ее совершенствования, нисколько не умаляя ее значения в рамках прежних возможностей.
Во-первых, [1] дает только внешний контур опасной зоны, в которой токсодоза превышает пороговое значение, тогда как несомненный практический интерес представляет распределение токсодозы по территории и во времени. Такое распределение для ряда последовательных моментов времени можно было бы изображать на карте местности линиями равной токсодозы.
При распространении ядовитых веществ по воздуху они не только разбавляются за счет перемешивания с чистым воздухом, но и поглощаются поверхностью земли, особенно растительностью, или воды, а также вымываются (осаждаются) из атмосферы с дождем или снегом. Эти эффекты существенно неоднородны по пространству, поскольку неоднородна территория, окружающая место аварии, и по времени (меняется интенсивность осадков), а также меняются от сезона к сезону.
Существенный прогресс может быть достигнут за счет более совершенного метеорологического обеспечения модели. Для использования методики [1] необходимо знание вектора на высоте флюгера (10 м) вблизи места аварии. Поскольку Красноярск расположен в долине со сложным
37
рельефом и на распределение скорости течения воздуха существенно влияет как обычный для крупных городов "остров тепла", так и река, даже для простейшей модели необходимы постоянные метеонаблюдения практически на каждом потенциально опасном объекте. Альтернативной может быть только большая предварительная работа метеорологов, которые могут создать модель течений воздуха и распределения его температуры над Красноярском, для использования которой будут необходимы уже измерения скорости ветра в немногих точках города. Еще более совершенная модель течений необходима для использования других моделей распространения примесей.
Здесь же следует отметить особую сложность штилевых условий, причем как в обсуждаемой методике [1], так и в наиболее совершенных существующих моделях. Поясним это примером. В соответствии с [1] при разлитии тонны жидкого хлора при штиле зоной заражения является круг радиусом около 5 км. При характерном времени распространения газа порядка часа несложно вычислить, что для достижения пороговой токсодозы хлора, равной 0.6 г×мин/м3. весь этот хлор должен остаться в тонком слое высотой около 1 м. Это, конечно, невозможно, и совсем не этот вывод следует делать. Просто при штиле реальное облако будет блуждать заранее непредсказуемыми путями. Оно будет на два порядка толще и окажет опасное влияние, грубо говоря, на 1% этой территории. Но какая именно часть круга будет этим 1%, предсказать или невозможно, или слишком сложно, и поэтому методика [1] дает для штилевого случая такую многократно завышенную площадь. Это свойство методики [1] более подробно обсуждается ниже в отдельном параграфе.
Поэтому на опасных объектах желательно следовать простой рекомендации: выбирать по возможности ветреную погоду для работ по транспортировке ядовитых веществ. Но поскольку технология не всегда это до-
38
пускает, совершенствование методик прогноза распространения примесей в штилевой атмосфере остается приоритетной задачей.
Так как основную угрозу населению представляют тяжелые газы, на распространение которых существенно влияет сила тяжести, то рельеф местности следует учитывать при решении выше упомянутых задач, а не только при определении воздушных течений.
Совершенствование традиционной методики может быть связано также с заменой токсодозы на иные параметры загрязнения, более адекватно учитывающие влияние ядов на человека.
Список литературы
1. Методика прогнозирования масштабов заражения сильнодействующими ядовитыми веществами при авариях (разрушениях) на химически опасных объектах и транспорте. Руководящий документ РД 52.04.253-
90.Л.: Гидрометеоиздат. 1991. 23 с.
2.4.Модель Паскуилла-Гиффорда
Условия аварийных выбросов очень отличаются как от условий ядерных взрывов, так и от стационарной работы дымовых труб. Поэтому наиболее близкой из хорошо исследованных областей являются аварии на АЭС. Мы не ориентируемся на анализы крупномасштабных катастроф, поэтому не будем рассматривать многочисленные работы, посвященные чернобыльским событиям.
Интересующие нас модели распространения примесей в атмосфере создавались для прогноза загрязнения стационарными источниками и для случаев повышенных технологических или аварийных выбросов.
Отражающие современные достижения в этой области модели, апробированные и утвержденные для обязательного использования при проек-
39
тировании и эксплуатации АЭС, изложены в руководстве [1]. Руководством предлагается использовать три различные модели в зависимости от интересующего масштаба. Для расстояний в десятки и сотни километров - это мезомасштабная и региональная модели Института экспериментальной метеорологии, которые мы рассмотрим ниже.
Для расстояний до 10 км используют модель Паскуилла-Гиффорда, которая является также рабочей моделью Международного агентства по атомной энергии (МАГАТЭ). Поэтому мы начинаем обзор именно с этой наиболее часто используемой модели.
Модель распространения примесей в атмосфере, созданная Паскуиллом и Гиффордом, является эмпирической моделью. В ее основе лежит представление концентрации примеси, выбрасываемой непрерывным точечным источником в атмосфере, как струи с гауссовыми распределениями по вертикали и в поперечном к ветру направлении:
q(x, y, z) = |
|
|
Q |
|
× f F fW ×exp( − |
y |
2 |
) × |
|||
|
2πσ y (x)σ z (x)u |
2σ y2 |
(x) |
||||||||
|
|
|
|
|
|
|
|||||
×(exp( − |
(z − h)2 |
) + exp( − |
(z − h)2 |
)) |
|
|
, |
||||
2σ z2 (x) |
2σ z2 |
(x) |
|
|
|||||||
|
|
|
|
|
|
||||||
где x, y, z – декартовы координаты, ось z – вверх, ось x – по ветру; |
|||||||||||
h – |
эффективная |
высота источника (то есть высота с учетом |
|||||||||
первоначального подъема перегретой струи); |
|
|
|||||||||
Q – мощность источника выброса; |
|
|
|
q – концентрация примеси в данной точке пространства; u – скорость ветра, усредненная по слою перемешивания;
σ y (x) и σz (x) – вертикальная и поперечная дисперсии облака приме-
си;
40
f F и fW - поправки на обеднение облака за счет сухого осаждения примеси и ее вымывания осадками.
Сумма экспонент в этой формуле соответствует поверхности земли, не поглощающей примесь, при абсолютном поглощении будет разность. Основным содержанием модели являются обобщающие многочисленные экспериментальные данные, конкретные функции σ y (x) и σz (x) и выра-
жения для h , f F и fW .
При этом метеорологические условия подразделяются на 6 классов устойчивости атмосферы (от A до F). Распределение скорости ветра считают степенной функцией.
Конкретные формулы для дисперсий σy (x) и σz (x) различны для раз-
ных рельефов местности. Обычно местности делят на равнинные, сильно пересеченные, сельскую местность, лес, город. Возможно также использование более общих формул с заданием параметра шероховатости земной поверхности. Есть некоторые рекомендации для более сложных случаев. Однако при сложном рельефе или при наличии крупных водоемов рекомендуется проводить натурные эксперименты, без которых применение модели становится некорректным.
Отметим, что реализация этой модели на ЭВМ достаточно проста и время расчетов по ней пренебрежимо мало по сравнению с вводом и выводом информации. При появлении новых сведений для конкретной местности модель несложно пополнять.
До настоящего времени продолжается совершенствование моделей данного вида. Так, созданы различные версии модели TUPOS [2], [3], [4], в которых учитывается отличие направления и величины скорости ветра на уровень струи (от показываемых флюгером), более детально моделируется взаимодействие с лежащим выше струи теплым слоем воздуха (при наличии инверсии), уточняются коэффициенты в модели. Поскольку эти моде-
41
ли чисто эмпирические, единственным критерием совершенствования является лучшее соответствие экспериментальным данным. Такое сравнение для усовершенствованной модели TUPOS выполнено в [4].
В некоторых случаях лучшего соответствие экспериментальным данным достигают даже за счет некоторого упрощения модели. Так, в [5] в качестве вертикальной дисперсии струи σz (x) используют высота слоя пе-
ремешивания, что для условий развитой атмосферной конвекции дает хорошие результаты. Однако в модели содержатся некоторые коэффициенты, указанные для условий конкретных экспериментов, но не приведены правила их вычисления в общем случае. При выборе модели для реализации следует иметь в виду, что в журнальных публикациях практически всегда описание неполно. Поэтому следует сразу ориентироваться на собственную доработку или восполнение пробелов за счет сотрудничества с авторами. В этом отношении предпочтительнее использование отечественных моделей.
Поскольку модель Паскуилла-Гиффорда проста и имеет официальный статус, ее целесообразно реализовать, даже если запланировано создание более совершенных моделей.
Список литературы
1.Руководство по организации контроля состояния природной среды в районе расположения АЭС/ Под ред. К.П. Махонько. Л.: Гидрометеоиз-
дат. 1990. 264 с.
2.Turner D.B. Addendum to TUPOS - Incorporatoin of a Hesitant Plume Algorithm. 1986. EPA-600/8-86/0.27. U.S. Environmental Protection Agency, Research Triange Park, NC (available only from NTIS, Accession Number PB86-241 031/AS).
3.Briggs G.A. Analytical parameterization of diffusion: the convective boundary layer // J. Clim. Appl. Met. 1985.V. 24/ Pp. 1167-1186.
42