Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
60
Добавлен:
21.02.2016
Размер:
528.62 Кб
Скачать

Оглавление

 

ПРОГРАММНЫЙ КОМПЛЕКС ЛИРА ДЛЯ РАСЧЕТА И ПРОЕКТИРОВАНИЯ

 

КОНСТРУКЦИЙ................................................................................................................................

2

Общие сведения о ПК ЛИРА...................................................................................................

2

Режим создания расчетной схемы..........................................................................................

7

Принципы создания расчетных схем..................................................................................

7

Рациональная разбивка на конечные элементы...............................................................

10

Импорт расчетных схем в ПК ЛИРА. ...............................................................................

18

Библиотека конечных элементов......................................................................................

19

Понятия физической и геометрической нелинейности и ее реализация в ПК ЛИРА .22

Режим визуализации результатов расчета...........................................................................

25

Расчетные сочетания усилий (РСУ)..................................................................................

25

Правила знаков при чтении результатов расчета............................................................

39

Экспорт задачи....................................................................................................................

43

Презентация результатов расчетов ...................................................................................

44

ЛИР-СТК.................................................................................................................................

45

Назначение ЛИР-СТК.........................................................................................................

45

Библиотека проектируемых сечений................................................................................

46

Библиотека проектируемых узлов ....................................................................................

47

ЛИРА-КМ................................................................................................................................

49

ПРОГРАММНЫЙ КОМПЛЕКС ЛИРА ДЛЯ РАСЧЕТА И ПРОЕКТИРОВАНИЯ КОНСТРУКЦИЙ

1. Общие сведения о ПК ЛИРА

Программный комплекс ЛИРА (ПК ЛИРА) – это многофункциональный программный комплекс для расчета, исследования и проектирования конструкций различного назначения.

ПК ЛИРА с успехом применяется в расчетах объектов строительства, машиностроения, мостостроения, атомной энергетики, нефтедобывающей промышленности и во многих других сферах, где актуальны методы строительной механики.

Программные комплексы семейства ЛИРА имеют более чем 40-летнюю историю создания, развития и применения в научных исследованиях и практике проектирования конструкций. Программные комплексы семейства ЛИРА непрерывно совершенствуются и приспосабливаются к новым операционным системам и графическим средам. Новейшим представителем семейства ЛИРА является ПК ЛИРА версии 9.6.

Кроме общего расчета модели объекта на все возможные виды статических нагрузок, температурных, деформационных и динамических воздействий (ветер с учетом пульсации, сейсмические воздействия и т.п.) ПК ЛИРА автоматизирует ряд процессов проектирования: определение расчетных сочетаний нагрузок и усилий, назначение конструктивных элементов, подбор и проверка сечений стальных и железобетонных конструкций с формированием эскизов рабочих чертежей колонн и балок.

ПК ЛИРА позволяет исследовать общую устойчивость рассчитываемой модели, проверить прочность сечений элементов по различным теориям разрушений. ПК ЛИРА предоставляет возможность производить расчеты объектов с учетом физической и геометрической нелинейностей, моделировать процесс возведения сооружения с учетом монтажа и демонтажа элементов.

ПК ЛИРА состоит из нескольких взаимосвязанных информационных систем.

Система ЛИР-ВИЗОР

Расчетные процессоры

Библиотека конечных элементов

Система УСТОЙЧИВОСТЬ

Система ЛИТЕРА

Система ФРАГМЕНТ

Система ЛИР-КС (Конструктор сечений)

Системы ЛИР-АРМ, ЛИР-ЛАРМ (Железобетонные конструкции)

Система ЛИР-СТК (Стальные конструкции)

Система ЛИР-РС (Редактируемый сортамент)

Система ДОКУМЕНТАТОР Система ЛИР ВИЗОР – это единая графическая среда, которая располагает обширным

набором возможностей и функций для формирования адекватных конечно-элементных и супер-элементных моделей рассчитываемых объектов, их подробного визуального обследования и корректировки, для задания физико-механических свойств материалов, связей, разнообразных нагрузок, характеристик различных динамических воздействий, а также взаимосвязей между загружениями для определения их наиболее опасных сочетаний.

Возможности, предоставляемые по результатам расчета при отображении напряженнодеформированного состояния объекта, позволяют произвести детальный анализ полученных данных по полям перемещений и напряжений, по эпюрам усилий и прогибов, по мозаикам разрушения элементов, по главным и эквивалентным напряжениям и по многим другим параметрам. ЛИР ВИЗОР предоставляет исчерпывающую информацию по всему объекту и по его элементам.

Всистеме ЛИР ВИЗОР реализована возможность визуализации схемы и ее напряженно-деформированного состояния в графике OpenGL.

ЛИР ВИЗОР позволяет вести общение с комплексом на русском и английском языках, причем замена языка может осуществляться на любой стадии работы с комплексом. ЛИР ВИЗОР дает возможность использовать любую действующую систему единиц измерения, как при создании модели, так и при анализе результатов расчета.

Всостав ПК ЛИРА входит несколько РАСЧЕТНЫХ ПРОЦЕССОРОВ. Все они предназначены для выполнения так называемого основного расчета и реализуют современные усовершенствованные методы решения систем уравнений, обладающие высоким быстродействием и позволяющие решать системы с очень большим числом неизвестных.

ЛИНЕЙНЫЙ процессор предназначен для решения задач, описывающих работу материала конструкций до достижения предела упругости.

ШАГОВЫЙ процессор позволяет решать задачи, связанные с нелинейной упругостью материала (бетон и железобетон), геометрической нелинейностью (ванты, большепролетные покрытия, мембраны), а также с конструктивной нелинейностью (контактные задачи, односторонние связи, трение). При расчетах нелинейных задач производится автоматический выбор шага нагружения с учетом его истории.

Процессор МОНТАЖ плюс реализует моделирование работы сооружения в процессе возведения при многократном изменении расчетной схемы. Этот процессор позволяет также проводить компьютерное моделирование возведения высотных зданий из монолитного железобетона с учетом изменений жесткости и прочности бетона, вызванных временным замораживанием уложенной смеси и другими факторами.

Процессор МОСТ позволяет произвести построение поверхностей и линий влияния в мостовых сооружениях от подвижной нагрузки.

Процессор ДИНАМИКА плюс (ДИНАМИКА во времени) реализует метод прямого интегрирования уравнений движения по времени, что позволяет производить компьютерное моделирование поведения конструкции, в том числе с учетом нелинейности.

Расчетные процессоры содержат обширную БИБЛИОТЕКУ КОНЕЧНЫХ ЭЛЕМЕНТОВ, которая позволяет создавать адекватные расчетные модели практически без ограничений на описание реальных свойств рассчитываемых объектов. При этом возможны задание линейных и нелинейных законов деформирования материалов, учет геометрической нелинейности с нахождением формы изначально изменяемых систем, а также учет конструктивной нелинейности. Реализованы законы деформирования различных классов железобетона.

Вспомогательные расчетные процессоры позволяют проводить дальнейшие исследования расчетной модели по результатам основного расчета.

Система УСТОЙЧИВОСТЬ дает возможность произвести проверку общей устойчивости рассчитываемого сооружения с определением коэффициента запаса и формы потери устойчивости.

Система ЛИТЕРА реализует вычисление главных и эквивалентных напряжений по различным теориям прочности.

Система ФРАГМЕНТ позволяет определить силы воздействия одного фрагмента рассчитываемого сооружения на другой как нагрузку. В частности, могут быть определены нагрузки, передаваемые наземной частью расчетной схемы на фундаменты.

Система ЛИР-КС (Конструктор сечений) позволяет в специализированной графической среде сформировать сечения произвольной конфигурации, вычислить их осевые, изгибные, крутильные и сдвиговые характеристики. Кроме того, предоставляется возможность

вычисления секториальных характеристик сечений, координат центров изгиба и кручения, моментов сопротивления, а также определения формы ядра сечения. При наличии усилий в заданном сечении производится отображение картины распределения текущих, главных и эквивалентных напряжений, соответствующих различным теориям прочности.

Конструирующая система ЛИР АРМ реализует подбор площадей сечения арматуры колонн, балок, плит и оболочек по первому и второму предельным состояниям в соответствии с действующими в мире нормативами. Существует возможность задания произвольных характеристик бетона и арматуры, что имеет большое значение при расчетах, связанных с реконструкцией сооружений. Система позволяет объединять несколько однотипных элементов в конструктивный элемент, что позволяет производить увязку арматуры по длине всего конструктивного элемента. Система может функционировать в локальном режиме (ЛИР-ЛАРМ), осуществляя как подбор арматуры, так и проверку заданного армирования для одного элемента. По результатам расчета формируются чертежи балок и колонн, а так же производится создание dxf файлов чертежей.

Конструирующая система ЛИР СТК работает в двух режимах – подбора сечений элементов стальных конструкций, таких как фермы, колонны и балки, и проверки заданных сечений в соответствии с действующими в мире нормативами. Допускается объединение нескольких однотипных элементов в конструктивный элемент. Система может функционировать в локальном режиме, позволяя проверить несколько вариантов при конструировании требуемого элемента.

Система ЛИР-РС, которая информационно связана с системой ЛИР СТК, позволяет производить редактирование используемой сортаментной базы прокатных и сварных профилей.

Система ДОКУМЕНТАТОР предназначена для формирования отчетов по результатам работы с комплексом. При этом вся информация может быть представлена как в табличном, так и в графическом виде. Табличный и графический разделы необходимой для отчета информации могут быть размещены совместно на специально организуемых для этой цели листах и снабжены комментариями и надписями. Кроме того, табличная информация может быть передана в MS Excel, а графическая – в MS Word. Реализован вывод таблиц в формате

HTML.

ПК ЛИРА поддерживает информационную связь с такими системами как AutoCAD, ArchiCAD, Allplan, HyperSteeel, а также ПК МОНОМАХ, ФОК-ПК.

Теоретической основой ПК ЛИРА является метод конечных элементов (МКЭ), реализованный в форме перемещений. Выбор именно этой формы объясняется простотой ее

алгоритмизации и физической интерпретации, наличием единых методов построения матриц жесткости и векторов нагрузок для различных типов конечных элементов, возможностью учета произвольных граничных условий и сложной геометрии рассчитываемой конструкции.

2.Режим создания расчетной схемы

2.1.Принципы создания расчетных схем

Расчетная схема представляет собой идеализированную модель конструкции. Модель разбивается на конечные элементы. В результате такой разбивки появляются узлы. Элементы и узлы схемы нумеруются. В опорные узлы следует ввести соответствующие связи (запретить перемещения по каким-либо степеням свободы, либо ограничить перемещения узла конечными элементами, моделирующими работу связи). Нумерация узлов и элементов определяет последовательность задания исходной информации на входном языке и чтение результатов счёта. Конечные элементы, имеющие одинаковые жёсткостные характеристики, объединяются в типы жесткости.

Расчетная схема располагается в правой декартовой системе координат.

Для фиксации местоположения конечного элемента в схеме служит местная система координат - Χ1, Υ1, Ζ1, которая является только правой декартовой. Местная система координат необходима для ориентации местной нагрузки, главных осей инерции в сечении стержня, усилий и напряжений, возникающих в элементе.

Для стержневых КЭ местная система координат имеет следующую ориентацию: ось Χ1 направлена от начала стержня (первый узел) к концу (второй узел). Оси Υ1 и Ζ1 - это главные центральные оси инерции поперечного сечения стержня и вместе с осью Χ1 образуют правую тройку. При этом ось Ζ1 направлена всегда в верхнее полупространство, а ось Υ1 параллельна плоскости ΧΟΥ.

Однако для построения местной системы координат для стержня в общем случае этого недостаточно. Если одна из осей сечения стержня в реальной конструкции не параллельна плоскости Χ0Υ, то необходимо задавать угол чистого вращения - угол поворота главных осей инерции относительно положения, принятого по умолчанию (см. п. 9.6).

Для всех плоскостных КЭ ось Χ1 направлена от первого узла ко второму. Для прямоугольных элементов плиты и оболочки ось Υ1 направлена от первого узла к третьему. Для плосконапряженных элементов от первого узла к третьему направлена ось Ζ1. Для треугольных элементов плиты и оболочки ось Υ1 ортогональна оси Χ1 и расположена в плоскости элемента. Для плосконапряженных треугольных элементов ось Ζ1 ортогональна оси Χ1 и расположена в плоскости элемента.

Каждый узел схемы имеет свою локальную систему координат - Χ2, Υ2, Ζ2, которая является правой декартовой. По умолчанию локальная система координат узла совпадает с глобальной. Локальная система координат узла позволяет задавать нагрузки и заданные смещения в направлении, не совпадающем с глобальными осями.

Каждый узел схемы в общем случае имеет 6 степеней свободы: три линейных перемещения вдоль осей Χ или Χ2; Υ или Υ2; Ζ или Ζ2 и три поворота вокруг Χ или Χ2, Υ или Υ2, Ζ или Ζ2.

Для расчетных схем, в которых количество степеней свободы в узле заведомо меньше 6 (плоские фермы, плоские рамы и т.п.), применяется так называемый признак схемы. В ПК ЛИРА задействованы пять признаков схемы:

Признак 1 – схемы, располагаемые в плоскости XOZ; каждый узел имеет 2 степени свободы - линейные перемещения вдоль осей X, Z или X2, Z2. В этом признаке схемы рассчитываются плоские фермы и балкистенки.

Признак 2 – схемы, располагаемые в плоскости XOZ; каждый узел имеет 3 степени свободы - линейные перемещения вдоль осей X, Z или X2, Z2 и поворот вокруг оси Y или Y2. В этом признаке схемы рассчитываются плоские рамы и допускается включение элементов ферм и балок-стенок.

Признак 3 – схемы, располагаемые в плоскости XOY; каждый узел имеет 3 степени свободы - линейное перемещение вдоль оси, Z или Z2 и повороты вокруг осей X, Y или X2, Y2. В этом признаке рассчитываются балочные ростверки и плиты; допускается учет упругого основания.

Признак 4 – пространственные схемы, каждый узел которых имеет 3 степени свободы - линейные перемещения вдоль осей X, Y, Z или X2, Y2, Z2. В этом признаке рассчитываются пространственные фермы и объемные тела.

Признак 5 – пространственные схемы общего вида с 6 степенями свободы в узле. В этом признаке схемы рассчитываются пространственные каркасы, оболочки и допускается включение объемных тел, учет упругого основания и т.п.

Граничные условия в расчетной схеме могут быть заданы непосредственно на узел, а также смоделированы при помощи связей конечной жёсткости. Последнее особенно эффективно, если в налагаемых связях необходимо определить реакции. При этом следует иметь в виду, что введение связей, жесткости которых значительно превосходят жесткость элементов системы, может снизить точность счета. Если же жесткость вводимых связей невелика, могут быть некоторые искажения истинного решения для внешне статически определимых систем. Рекомендуется, чтобы величина жесткости вводимых связей была на порядок - два больше самой большой погонной жесткостной характеристики из всех элементов системы. Но в каждом отдельном случае нужна индивидуальная оценка.

Статистические воздействия задаются в виде сосредоточенных сил и моментов как в узлы схемы (узловая нагрузка) по направлениям осей глобальной и локальной систем

координат, так и на элементы (местная нагрузка) по направлениям местной или глобальной систем координат.

Динамические воздействия задаются в виде узловых нагрузок, действующих вдоль осей глобальной или локальной систем координат. Веса масс сооружения задаются как собственный вес конструкций, оборудования и т. п.; при этом допускается использование как местных, так и узловых нагрузок.

Действие одной нагрузки или группы нагрузок может быть объявлено как отдельное загружение - статическое или динамическое. При наличии нескольких загружений может быть произведен выбор наиболее опасных их сочетаний, которые формируют так называемые расчетные сочетания усилий (РСУ), необходимые при конструировании элементов схемы.

Реализована возможность формирования весов масс для динамического воздействия непосредственно из какого-либо статического загружения.

При создании расчетной схемы могут быть задействованы различные системы единиц измерения. Основными единицами являются единицы длины (L), силы (F), размеров сечений (S), температуры (t 0С).

Расчетные процессоры осуществляют расчет, используя именно эти единицы. Перевод из исходных единиц в базовые производится автоматически.

Представляя расчетную схему сооружения в виде конечно-элементной модели, пользователь всегда стремится достичь компромисса между двумя противоречивыми желаниями: получить как можно более точное решение задачи и обусловить приемлемое время счета. Желательно также получить обозримый объем результатов. Для достижения такого компромисса необходимо уметь оценивать оба указанных фактора. Так, время решения задачи легко прогнозируется по количеству узлов, элементов, загружений, а также быстродействию компьютера. ПК ЛИРА автоматически дает прогноз времени решения задачи для всех этапов расчета. Однако оценка точности решения задачи является вопросом очень сложным, так как зависит от многих слабо формулируемых факторов:

• густота сетки – с одной стороны, сгущение сетки повышает точность, с другой стороны, неограниченное сгущение может повлечь слабую обусловленность матрицы канонических уравнений и потерю точности;

• физико-механические свойства расчетной модели – расчетная схема может быть близка к геометрически изменяемой, содержать элементы с сильно различающимися жесткостями, что также влечет потерю точности;

геометрия конечных элементов – если стороны элементов сильно различаются по длине, то это приведет к плохой обусловленности матрицы накопленных уравнений и также

кпотере точности;

свойство конечных элементов – использование высокоточных элементов часто приводит к более точному решению, чем использование простых элементов на значительно более густой сетке. Назначение сетки надо проводить на основе многих факторов. Так, например, густоту сетки предпочтительно увеличивать только в местах предполагаемого большого градиента напряжений (входящие узлы, места сосредоточенных нагрузок и т.п.). Кроме того, знание свойств конечных элементов также часто помогает рационально построить конечную модель.

2.2. Рациональная разбивка на конечные элементы

Принцип фрагментации

Иногда приходится решать большие задачи, в которых густая сетка недопустима из-за ограниченных ресурсов компьютера, а укрупненная разбивка не дает достаточно полной картины напряженнодеформированного состояния конструкции.

В этом случае предлагается совместить укрупненную и густую сетку. Так, для многоэтажного здания (рис. 2.1 а) самой важной информацией является картина напряженнодеформированного состояния первых трех этажей. Здесь можно выполнить густую разбивку только первых трех этажей. Разбивка остальных этажей может быть очень грубой. Результаты решения по третьему этажу можно игнорировать, так как верхние 2-3 слоя конечных элементов в ней будут нести искаженную информацию.

а) б)

Рис. 2.1. Принцип фрагментации

Соседние файлы в папке МК ВОПРОСЫ И ЛЕКЦИИ