Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
дипломная часть.docx
Скачиваний:
71
Добавлен:
21.02.2016
Размер:
3.41 Mб
Скачать

3.1.3 Данные радарной топографической съемки (srtm)

Shuttle radar topographic mission (SRTM) – Радарная топографическая съемка большей части территории земного шара, за исключением самых северных (>60), самых южных широт (>54), а также океанов, произведенная за 11 дней в феврале 2000г с помощью специальной радарной системы, с борта космического корабля многоразового использования «Шаттл». Двумя радиолокационными сенсорами SIR-C и X-SAR, было собрано более 12 терабайт данных. В течение этого времени с помощью метода называемого радарной интерферометрией, было собранно огромное количество информации о рельефе Земли, ее обработка продолжается до сих пор. Результатом съемки стала цифровая модель рельефа 85 процентов поверхности Земли (рис.9). Но определенное количество информации уже доступно пользователям. SRTM - международный проект, возглавленный Национальной Геопространственной Спецслужбой (NGA), НАСА, итальянским космическим агентством (ASI) и немецким Космическим Центром [9].

Рис. 10 Схема покрытия территории Земли съемкой SRTM [10].

Данные SRTM существуют в нескольких версиях: предварительные (версия 1, 2003 г) и окончательная (версия 2, февраль 2005 г). Окончательная версия прошла дополнительную обработку, выделение береговых линий и водных объектов, фильтрацию ошибочных значений. Данные распространяются в нескольких вариантах - сетка с размером ячейки 1 угловая секунда и 3 угловые секунды. Более точные односекундные данные (SRTM1) доступны на территорию США, на остальную поверхность земли доступны только трехсекундные данные (SRTM3). Файлы данных представляют собой матрицу из 1201´1201 (или 3601´3601 для односекундной версии) значений, которая может быть импортирована в различные программы построения карт и геоинформационные системы. Кроме того, существует версия 3, распространяемая в виде файлов ARC GRID, а также ARC ASCII и в формате Geotiff, квадратами 5´5 в датуме WGS84. Эти данные получены организацией CIAT из оригинальных высотных данных USGS/NASA путем обработки, которая обеспечила получение гладких топографических поверхностей, а так же интерполяцию областей, в которых отсутствовали исходные данные. [10]

Номенклатура данных производиться таким образом, название квадрата данных версий 1 и 2 соответствует координатам его левого нижнего угла, например: N45E136,где N45 является 45 градусов северной широты, а E136 является 136 градусов восточной долготы, буквы (n) и (e) в имени файла обозначают, соответственно, северное и восточное полушария.. Название квадрата данных обработанной версии (CGIAR) соответствует номеру квадрата из расчета 72 квадрата по горизонтали (360/5) и 24 квадрата по вертикали (120/5). Например: srtm_72_02.zip /крайне правый, один из верхних квадратов. Определить нужный квадрат можно используя сетку-разграфку (Рис.11.) [9].

Рис.11 Схема покрытия SRTM4 [9].

3.1.4 Оценка точности данных (srtm)

Общедоступными являются значения высот в углах ячейки размером 3 на 3. Точность высот заявлена не ниже 16 м, но тип оценки этой величины - средняя, максимальная, средняя квадратическая ошибка (СКО) — не пояснен, что и не удивительно, поскольку для строгой оценки точности необходимы либо эталонные значения высот примерно такой же степени охвата, либо строгий теоретический анализ процесса получения и обработки данных. В связи с этим, анализ точности матрицы высот SRTM проводился не одним коллективом ученых разных стран мира. По оценкам А.К. Корвэула и И. Эвиака высоты SRTM имеют ошибку, которая для равнинной местности в среднем составляет 2,9 м, а для холмистой — 5,4 м. Причем значительная часть этих ошибок включает систематическую составляющую. Согласно их выводам, матрица высот SRTM подходит для построения горизонталей на топографических картах масштаба 1:50000 Но на некоторых территориях высоты SRTM по своей точности примерно соответствуют высотам, полученным с топографической карты масштаба 1:100000, а также может использоваться при создании ортофотопланов по космическим снимкам высокого разрешения, снятых с незначительным углом отклонения от надира [5].