Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
65
Добавлен:
20.02.2016
Размер:
1.59 Mб
Скачать

6.3.3. Метод множників Лагранжа

Для розв’язування задач нелінійного програмування не існує, як уже зазначалося, універсального методу, а тому доводиться застосовувати багато методів і обчислювальних алгоритмів, які ґрунтуються, здебільшого, на теорії диференціального числення, і вибір їх залежить від конкретної постановки задачі та форми економіко-математичної моделі.

Методи нелінійного програмування бувають прямі та непрямі. Прямими методами оптимальні розв’язки відшукують у напрямку найшвидшого збільшення (зменшення) цільової функції. Типовими для цієї групи методів є градієнтні. Непрямі методи полягають у зведенні задачі до такої, знаходження оптимуму якої вдається спрос­тити. До них належать, насамперед, найбільш розроблені методи квадратичного та сепарабельного програмування.

Оптимізаційні задачі, на змінні яких не накладаються обмеження, розв’язують методами класичної математики. Оптимізацію з обмеженнями-рівностями виконують методами зведеного градієнта, ска­жімо методом Якобі, та множників Лагранжа. У задачах оптимізації з обмеженнями-нерівностями досліджують необхідні та достатні умови існування екстремуму Куна—Таккера.

Розглянемо метод множників Лагранжа на прикладі такої задачі нелінійного програмування:

(6.15)

за умов

(6.16)

,

де функції ідиференційовані.

Ідея методу множників Лагранжа полягає в заміні даної задачі простішою: на знаходження екстремуму складнішої функції, але без обмежень. Ця функція називається функцією Лагранжа і подається у вигляді:

(6.17)

де λі — не визначені поки що величини, так звані множники Лагранжа.

Знайшовши частинні похідні функції L за всіма змінними і прирівнявши їх до нуля:

запишемо систему

(6.18)

що є, як правило, нелінійною.

Розв’язавши цю систему, знайдемо і— стаціонарні точки. Оскільки їх визначено з необхідної умови екстремуму, то в них можливий максимум або мінімум. Іноді стаціонарна точка є точкою перегину (сідлова точка). Отже, для визначення достатніх умов екстремумута діагностування його типу існує спеціальний алгоритм [15].

Розв’яжемо методом множників Лагранжа наведену далі задачу.

Задача 6.19.

Акціонерне товариство з обмеженою відповідальністю відвело 1200 га ріллі під основні рослинницькі культури — озиму пшеницю та цукрові буряки.

Техніко-економічні показники вирощування цих культур відбиває таблиця:

Показник

Площа, га, відведена

під озиму пшеницю, х1

під цукровий буряк, х2

Урожайність, т/га

4

35

Ціна, грн./т

800

300

Собівартість, грн./т

Знайти оптимальну площу посіву озимої пшениці та цукрових буряків.

Нехай х1 — площа ріллі, відведена під сотні га озимої пшениці; х2 — площа ріллі, відведена під цукрові буряки, сотні га.

Зауважимо, що собівартість однієї тони пшениці та цукрових буряків залежить від відповідної площі посіву.

Запишемо економіко-математичну модель. За критерій оптимальності візьмемо максимізацію валового прибутку:

за умов

.

Запишемо функцію Лагранжа:

Візьмемо частинні похідні і прирівняємо їх до нуля:

Із цієї системи визначимо сідлову точку. З першої та другої рівностей знайдемо вирази для 1 і прирівняємо їх:

,

або

(6.19)

Із останнього рівняння цієї системи маємо:

.

Підставивши значення у (6.19), дістанемо:

або .

Розв’язавши це квадратне рівняння, дістаємо (178 га); (553 га).

Відповідно дістаємо: (1022 га);(647 га). Тобто сідловими точками є такі:

Обчислимо значення цільової функції у цих точках:

Отже, цільова функція набуває максимального значення, якщо озима пшениця вирощується на площі 647 га, а цукровий буряк— на площі 553 га.

Соседние файлы в папке Вітлінський В.В. Математичне програмування