Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Higher_Mathematics_Part_2

.pdf
Скачиваний:
408
Добавлен:
19.02.2016
Размер:
7.48 Mб
Скачать

1

Conclusion. The second type of improper integral dx is convergent

0 xλ

if λ < 1 and is divergent if λ ≥ 1

Т.7

Exercises for class and homework

Determine whether the improper integrals are convergent or divergent. Evaluate the convergent ones.

 

 

dx

 

 

 

 

 

 

 

 

 

dx .

 

 

 

 

 

 

 

1.

 

.

 

 

 

 

2.

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

x

 

 

 

 

 

 

 

 

1

5

x 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xdx

 

 

 

 

 

 

3.

e3x dx .

 

4.

.

 

 

 

 

2

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

−∞

1+ x

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

5.

 

 

 

 

 

.

6.

 

 

 

 

 

 

 

 

 

.

 

 

 

x

2

2x + 10

 

(1+ x)x

2

 

 

 

−∞

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

arctg x

 

 

 

 

 

 

 

7.

xex

 

dx .

 

8.

 

 

 

 

 

 

 

 

 

dx .

 

 

 

 

 

 

 

x

2

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

dx .

 

 

 

2

 

 

 

 

 

dx

 

 

9.

 

 

 

 

 

10.

 

 

 

 

.

 

 

 

 

 

x

2

4x +

3

 

0

 

 

 

1x 2

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

xdx

 

 

 

 

e

 

 

dx

 

 

 

 

 

 

 

11.

 

 

 

 

 

.

 

12.

 

 

 

 

 

 

 

 

.

 

 

 

 

x

 

x ln

2

 

 

 

 

 

 

 

1

 

 

 

1

 

 

 

0

 

 

x

 

 

Determine whether the improper integrals are convergent or divergent

 

xdx

 

 

 

 

x3 + 1

 

 

 

13.

.

 

 

14.

dx .

3

 

 

4

 

0

1+ x

 

 

 

 

 

1

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ln(1+ x

2 )dx

 

 

dx

 

 

 

 

15.

 

 

 

.

16.

 

 

.

 

x

 

x ln ln x

 

1

 

 

 

 

 

 

e2

 

 

 

 

 

 

1

xdx .

 

 

1

 

dx

 

 

17.

 

18.

 

.

 

 

 

 

0

1x 4

 

 

 

0

 

e x 1

 

 

 

1

dx

 

 

 

 

 

1

 

dx

 

 

19.

 

.

 

 

20.

 

 

.

sin x

 

 

x +

3

 

0

 

 

 

 

 

0

 

 

 

x

 

 

 

 

 

 

 

161

 

 

 

 

 

 

 

Answers

1.

1

.

2. Diverges.

3.

1

.

 

4. Diverges. 5.

π

. 6. 1 ln 2 .

7.

1

. 8.

π

+

1

ln 2 .

5

3

 

3

2

4

2

 

 

 

 

 

 

 

 

 

 

 

 

 

9.

 

π

.

10. Diverges.

11.

 

8

. 12. 1. 13. Converges. 14. Diverges. 15. Diverges.

2

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16. Diverges. 17. Converges. 18. Converges. 19. Diverges. 20. Converges.

Individual test problems

Т.7

7.1. Determine whether the improper integrals are convergent or divergent. Evaluate the convergent ones.

 

 

 

 

xdx

 

 

 

 

 

 

 

 

 

 

7.1.1.

 

 

 

 

 

 

 

 

.

 

 

 

 

 

16x

4

+ 1

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x3dx .

 

 

7.1.3.

 

 

 

 

 

 

0

 

 

 

16x4 + 1

 

 

 

 

 

0

 

 

 

 

 

 

 

xdx

 

 

 

 

 

 

7.1.5.

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−∞

 

 

(x

2 + 4)3

 

 

 

 

 

 

 

 

 

 

 

xdx

 

 

 

 

 

 

 

 

7.1.7.

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

4 (x2 + 16)5

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

7.1.9.

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

π(x

2

+ 4x +

5)

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16dx

 

 

7.1.11.

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

π(4x

2

+ 4x + 5)

 

1/ 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xdx

 

 

 

 

 

7.1.13.

 

 

 

 

 

 

 

 

 

.

 

 

4x

2

+ 4x + 5

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 x

2

 

 

 

 

 

 

 

 

 

7.1.15.

 

 

 

 

 

 

 

 

 

dx .

 

 

 

x

2

 

+

4

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

arctg x

 

 

7.1.17.

 

 

 

 

dx .

 

 

 

 

4x

2

+ 1

 

 

 

0

 

 

π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

7dx

 

 

 

 

 

7.1.19.

 

 

 

.

 

 

 

 

 

2

 

 

−∞ x

 

4x

 

 

 

 

 

16xdx

 

 

7.1.2.

 

 

 

 

.

16x

4

 

1

 

1

 

 

 

 

 

xdx

 

 

7.1.4.

.

 

 

 

1

16x4 1

x2 dx

7.1.6.0 3 (x3 + 8)4 .

 

 

 

xdx

 

 

 

 

 

 

7.1.8.

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

4

 

 

x2 4x + 1

 

 

 

 

xdx

 

 

 

 

 

 

7.1.10.

 

 

 

 

 

 

.

 

x

2

+ 4x

+

5

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

arctg 2xdx

 

 

 

 

7.1.12.

 

 

 

 

 

 

 

 

 

.

 

 

 

π(4x

2

+ 1)

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(x + 2)dx

 

7.1.14.

 

 

 

.

3 (x2 + 4x + 1)4

0

 

 

 

4dx

 

 

 

 

 

 

7.1.16.

 

 

 

 

 

 

 

.

 

 

x(1 + ln

2

 

 

1

 

 

x)

 

 

 

 

 

 

 

 

 

 

 

 

 

7.1.18. x sin xdx .

0

πdx

7.1.20.1/ 3 (9x2 + 1) arctg2 3x .

162

 

 

 

 

 

dx

 

 

 

 

 

 

 

0

 

 

 

x

2

 

 

 

 

x

 

 

 

7.1.21.

 

 

 

 

 

 

 

 

.

 

 

 

7.1.22.

 

 

 

 

 

 

 

 

 

 

 

dx .

 

 

2

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

2

 

 

x

(x + 1)

 

 

 

 

 

 

 

 

1 1 + x

 

 

 

1

 

 

 

 

 

 

 

−∞ x

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.1.23.

 

 

 

 

 

 

 

 

.

7.1.24. xe3x dx .

 

 

 

 

 

 

 

 

(6x

2

 

 

 

1)

 

 

 

 

 

 

 

 

 

1

 

5x +

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

7.1.25.

 

 

 

.

 

 

 

7.1.26.

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

2

 

 

 

2x

2

2x +

 

 

 

 

 

 

 

1

 

 

x

 

 

+2x

 

 

 

 

0

 

1

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

7.1. 27.

 

 

 

 

 

.

 

7.1.28.

 

 

 

 

 

 

 

 

.

 

 

 

 

 

x

2

3x + 2

 

 

x(ln x

1)

2

 

 

 

 

 

3

 

 

 

 

 

 

 

e2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dx

 

 

 

 

 

 

 

 

 

 

πdx

 

 

 

 

7.1.29.

 

 

 

 

 

 

 

.

 

7.1.30.

 

 

 

 

 

 

 

 

.

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

9x

 

9x + 2

 

2 (x2 + 4)

π arctg

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.2. Determine whether the improper integrals are convergent or divergent. Evaluate the convergent ones.

1/ 3 e3 + 1/ x

 

 

 

7.2.1.

 

 

 

 

 

 

 

 

 

 

dx .

 

 

 

 

 

x

2

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

dx

 

 

 

 

 

 

7.2.3. 3

 

 

 

.

 

 

 

0

 

 

 

2 4x

 

 

 

 

1

 

ln(3x 1)

 

 

 

 

7.2.5.

 

 

 

 

 

 

 

dx .

 

 

 

3x 1

1/ 3

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

ln 2

 

 

 

7.2.7.

 

 

 

 

 

 

 

 

 

dx .

 

(1x) ln

2

(1

 

1/ 2

 

x)

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

xdx

 

 

 

 

 

 

 

7.2.9.

 

 

 

.

 

 

 

 

 

1

4

 

 

 

 

0

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

2xdx .

 

 

 

7.2.11.

 

 

 

 

 

 

 

0

 

 

 

1 x4

 

 

 

 

 

1

 

 

2e

1

2

arcsin x

7.2.13.

 

 

 

 

π

 

 

dx .

 

0

 

 

 

π 1 x2

 

 

 

 

 

1

 

 

 

 

dx

 

 

 

 

7.2.15.

 

 

5

 

 

 

 

.

 

 

 

3

4x

 

 

3 / 4

 

 

 

3

 

 

 

 

dx

 

 

 

 

7.2.2.

 

 

 

 

 

 

.

 

 

x

2

 

6x + 9

 

1

 

 

 

 

 

1

 

 

 

 

 

 

dx

 

 

 

 

7.2.4.

 

 

 

 

 

 

 

 

 

.

 

20x

2

9x + 1

1/ 4

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

dx

 

 

 

 

7.2.6.

 

 

 

 

.

 

 

3 (3 x)5

 

 

1

 

 

 

2 / 3 3

ln(2 3x)

 

 

7.2.8.

 

 

 

2 3x

 

 

dx .

0

 

 

 

 

 

 

 

 

 

 

 

π / 6

 

 

 

cos 3xdx

 

7.2.10.

 

 

 

 

5 .

 

6

 

(1sin 3x)

0

 

 

 

 

 

0

 

 

 

 

dx

 

 

 

 

7.2.12.

3

 

 

 

.

 

1

+ 3x

 

 

1/ 3

 

 

 

 

π / 2

 

 

 

tg x

 

 

 

 

7.2.14.

 

e

 

dx .

 

 

cos

2x

 

0

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

dx

 

 

 

 

7.2.16.

 

 

 

 

 

 

 

 

 

.

5

4x x

2

 

 

1

 

 

 

4

163

π

 

sin xdx .

 

 

0

 

 

 

dx .

 

 

7.2.17.

 

 

7.2.18.

 

 

 

 

 

π / 2

7 cos2

x

 

3 / 4

 

4x + 3

 

 

2

 

 

 

 

xdx

 

1/ 3

 

 

 

dx

 

 

 

 

7.2.19.

 

 

 

 

.

7.2.20.

 

 

 

 

 

 

.

 

(x2 1)3 ln 2

 

2

9x +

2

1

 

 

0

9x

 

 

3

3 9xdx .

 

π / 2

3sin 3 xdx .

7.2.21.

 

7.2.22.

 

0 3 9 x2

 

 

 

0

 

 

 

cos x

 

 

1

 

x4 dx5 .

 

2

 

 

x2 dx

 

6 .

 

 

7.2.23.

3

 

7.2.24.

 

 

 

 

 

0

 

1 x

 

 

0

 

64 x

 

 

 

 

 

1

 

 

 

dx

 

 

5

 

 

x2 dx

 

 

 

 

7.2.25.

 

 

 

.

 

7.2.26.

 

 

 

 

.

 

9

1

2x

 

 

31(x3 1`)

 

1/ 2

 

 

 

1

 

 

 

1/ 4

 

 

dx

 

 

4

 

 

10xdx

 

 

7.2.27.

 

 

 

.

 

7.2.28.

 

 

.

3

 

 

 

4 (16 x2 `)3

 

0

 

 

1 4x

 

0

 

 

3 / 2

 

 

dx

 

1/ 2

 

 

dx

 

 

 

 

 

 

7.2.29.

 

 

 

.

7.2.30.

 

 

 

 

 

.

 

 

 

 

3x x2 2

(2x 1)

2

 

 

 

1

 

 

 

0

 

 

 

 

Topic 8. Application of the definite integral

Finding the area of a region. How to find the arc length. Computing volume by parallel cross sections. Computing the volume of a solid of revolution. The centroid of a plane region. Work.

Literature: [1, section 9], [2, section 2, ch. 2.2], [4, section 7, §24], [6, section 10], [7, section 12], [9, § 41].

Т.8

Main concepts

8.1. Computing areas

8.1.1. Area in rectangular coordinates

Consider the area of the region bounded by y = f (x) ( f (x) 0 ) and the

x- axis from x = a to x = b, as shown in fig. 2.5. The area S of the entire region is found by

b

S = f (x)dx.

a

164

However, if a function changes the sign finitely in [a; b] (fig. 2.6) the area is found according to the following formula

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

S =

 

f (x)

 

dx .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

y

 

 

 

 

 

 

y= f(x)

 

 

 

 

 

 

 

 

y = f(x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

c

d

 

О

 

 

 

 

 

 

 

О

 

 

b

a

 

b x

 

 

 

 

Fig. 2.5

 

 

 

 

 

 

Fig. 2.6

 

Let f1 and f2 be two continuous functions such that

f1 (x) ≤ f 2 (x) for all x in

the interval [a, b]. Let S be the region between the curve y = f1 (x) and the curve y = f 2 (x) for x in [a, b], as shown in fig. 2.7. The area of S is then given by

b

S = [ f2 (x) f1(x)]dx

a

It should be obvious to you that knowing the points of intersection is important in determining the limits of integration. For instance, the sketch of the region appears in fig. 2.8. To find where the curves intersect, we solve the

system of equations y = f1 (x)

and

y = f 2 (x) . In this case, if x1 < x2, then a = x1

and b = x2.

 

 

 

 

 

 

 

 

 

y

 

y=f2(x)

 

 

 

y

y=f2(x)

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

y=f1(x)

 

 

 

 

y=f1(x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

О

a

b

x

О a

 

b x

 

 

Fig. 2.7

 

 

 

 

Fig. 2.8

Sometimes area can more easily be determined by summing areas of horizontal elements rather than vertical elements. Let S be the region between

the curve x = g1 ( y) and the curve x = g 2 ( y) for y in [c, d], as shown in fig. 2.9 and 2.10. The area of S is then given by

d

S = [g2 ( y) g1 ( y)]dy.

c

165

y

 

 

y

 

d

 

 

 

d

x=g2(x)

 

 

 

 

 

S

 

 

 

c x=g1(x)

x=g2(x)

x=g1(x)

S

 

 

 

 

 

 

c

x

 

 

 

О

 

x

О

 

Fig. 2.9

 

 

Fig. 2.10

8.1.2. Area, if an outline is given parametrically

The path of some particle is given parametrically by the equations x = x(t) , y = y(t) 0 , t [α; β] . The area of S is then given by

 

β

β

 

 

S = y(t)dx(t) = y(t)x(t)dt,

 

where limits α and β must

α

α

= b .

be employed x(α) = a , y(β)

α β

О

Fig. 2.11

8.1.3. Area in polar coordinates

ρ = ρ(ϕ)

 

Let S be the region bounded by the rays

ϕ1

= α and ϕ 2

= β

and by the curve

 

 

 

 

 

 

ρ = ρ(ϕ) , as shown in fig. 2.11. The area of S

 

 

 

 

 

 

is then given by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

β

 

 

 

 

 

 

 

S =

ρ2

(ϕ)dϕ.

 

 

 

 

 

2

 

 

 

 

 

 

α

 

 

 

 

 

 

 

 

 

 

 

8.2. Arc length

The length l in rectangular coordinates of the arc y = f (x) , x [a; b] , if f (x) is continuous in this interval, then

b

l = 1+ ( f (x))2 dx.

a

If the path is given parametrically, x = x(t) , y = y(t) and if x(t) , y(t) are continuous in the interval [t1 ; t2 ] , then arc length is found according to the following formula

t2

l =

(x(t))2 + ( y(t))2 dt,

t1

 

here t1 < t2 .

166

The length l in polar coordinates of the curve ρ = ρ(ϕ) for ϕ in [ϕ1, ϕ2] is equal to

ϕ

ρ2 (ϕ) + (ρ′ (ϕ))2 dϕ

l = 2

ϕ1

 

8.3. Volume of a solid

8.3.1. Computing volume by parallel cross sections

The volume V of a spatial region, a “solid”, can be expressed as a definite integral of cross-section area S(x),

b

V = S (x)dx

a

as shown in fig. 2.12. So, to find the volume of some solid, follow these steps:

1.Choose a line to serve as an x axis.

2.For each plane perpendicular to that axis find the area of the cross section of the solid made by plane. Call this area S(x).

3.Determine the limits of integration, a and b, for the region.

4.Evaluate the definite integral b S(x)dx .

a

8.3.2. Computing the volume of a solid of revolution

Let y = f(x) be a continuous function such that f(x) 0 for x in the interval [a, b]. The curve y = f(x) is revolved around the x axis to form a solid of revolution (see fig. 2.13). The volume V of a solid is then given by

 

 

b

 

 

 

 

V = πf 2 (x)dx.

 

 

 

 

a

 

 

y

 

y

 

y=f(x)

 

S(x)

 

 

 

 

 

О

a

b x

О a

x

b x

 

 

 

Fig. 2.12

 

 

Fig. 2.13

 

 

167

 

 

Let y = f1(x)

and y = f2(x) be two continuous functions such that

0 f1 (x) f 2 (x)

for x in the interval [a, b]. Let S be the region bounded by the

curves y = f1(x) and y = f2(x) and above [a, b]. The region S is revolved around the x axis to form a solid of revolution. The volume V of a solid is then given by

b

V = π[ f22 (x) f12 (x)] dx.

a

8.4. Area of a surface of revolution

Let y = f(x) be a continuous function such that f(x) 0 for x in the interval [a, b] and f(x) has a continuous derivative. A formula for surface area P if y = f(x)

( a x b ) is revolved around x axis is given by

b

P = 2πf (x) 1+ ( f (x))2 dx.

a

If a curve is given by the parametric equations x = x(t) and y = y(t) , where

x(t) and y(t) have continuous derivatives and y(t) 0. Let C be that portion of the curve corresponding to t in [α, β]. Then the area of the surface of revolution formed by revolving C about the x axis is

β

P = 2πy(t) (x(t))2 + ( y(t))2 dt.

α

 

8.5. Work

 

 

 

 

 

 

 

 

 

Work A of variable force F(x), if a point M is traveled from х = а to х

= b,

а < b, can be calculated by the integral:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

A = F(x)dx.

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

8.6. The centroid

 

 

 

 

 

 

 

 

 

The centroid of a curve l, such that has an equation y = f (x) , x [a, b]

 

is

defined as the point (xc, yc), where

 

 

 

 

 

 

 

 

 

 

 

b

 

b

 

b

 

b

 

 

 

 

 

xdl

 

x 1+ ( f (x))2 dx

 

f (x)dl

 

f (x) 1+ ( f (x))2 dx

 

 

 

x =

a

=

a

, y =

a

=

a

 

.

 

b

b

b

b

 

c

 

 

c

 

 

 

 

 

 

dl

 

1+ ( f (x))2 dx

 

dl

 

1+ ( f (x))2 dx

 

 

 

 

 

a

 

a

 

a

 

a

 

 

Consider the area of the region bounded by y = f (x) , and the x- axis from

x = a to x = b, as shown in fig. 2.5. The centroid of this region is defined as the point (xc, yc), where

168

 

 

b

 

 

 

1

b

 

 

 

xf (x)dx

 

 

 

f 2 (x)dx

 

 

 

 

 

 

2

 

x

=

a

,

y =

 

a

.

 

 

b

 

 

b

c

 

 

c

 

 

 

 

f (x)dx

 

 

 

 

f (x)dx

 

 

 

a

 

 

 

 

a

 

Т.8 Typical problems

Area

1. Find the area of the region bounded by the curve y = x 2 3x and the line

y = 4.

Solution. A sketch of the region is given in fig. 2.14. To determine where the curves intersect we solve the system formed by the equations y = x 2 3x and

y = 4. We obtain y = x2 3x

x1 = −1; x2 = 4;

y = 4

y1 = 4; y2 = 4.

Thus the curve and the line intersect at (-1; 4) and (4; 4). The height is the y- value on the upper line minus the y-value on the lower curve:

4

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

y

 

 

S = [4 (x 2 3x)]dx = [4 x 2

+ 3x]dx =

4

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

x

3

 

 

 

3

 

2

 

 

 

64

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 4x

 

 

 

+

 

 

x

 

 

= 16

 

+ 24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

3

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

3 4 x

 

 

 

 

 

 

1

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

.

 

 

 

 

 

 

 

4

+

 

 

+

 

 

 

= 20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

2

 

6

 

 

 

 

 

 

Fig. 2.14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Find the area of the region bounded by the curve

y =

 

x and the lines

y = x 2 , y = − x (see fig. 2.15 ).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution. The line x = 1

is passed through the intersection of the straight

lines y = x 2 and

y = − x ,

and is

divids

the region by two parts. Then

S = S1 + S2 , where S

is the given region,

 

S1

is the left part and is bounded by

the lines y = − x , x = 1 and the curve

y =

 

 

x ,

S2

is the right part of S and is

bounded by the lines y = x 2 , x = 1 and

 

y =

 

x . We have:

 

 

1

 

 

 

3

 

 

 

 

 

 

1

 

 

 

 

 

 

 

S1 =

 

2x

2

 

 

 

 

x 2

 

 

 

2

 

1

 

5

 

( x + x)dx =

 

 

 

 

+

 

 

 

 

=

 

 

+

 

=

 

;

 

3

 

 

2

 

3

2

6

0

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

169

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

3

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2x

2

 

 

x 2

 

 

 

16

 

2

 

1

 

 

19

 

S2 = ( x x + 2)dx =

 

 

 

 

+ 2x

 

=

 

 

8 + 8 (

 

 

+ 2)

=

 

 

;

3

 

2

 

3

3

2

6

1

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S = S1 + S2 =

5

+

19

= 4 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

x = y 2 2 y 3

3. Find the area of the region bounded by the two parabolas

 

and x = 5 + 4 y y 2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution. Transforming the

equations

we

get x + 4 = ( y 1)2

and

(x 9) = ( y 2)2 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The

region is

sketched

in

fig.

2.16.

 

 

The

 

curves

intersect

when

y 2 2 y 3 = 5 + 4 y y 2 . Thus

y 2 3y 4 = 0 , or equivalently (y + 1)(y –4) = 0,

from which y A = −1 or

yB = 4 . With vertical strips three integrals are needed

to evaluate the area.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

у

х=1

у=х–2

 

 

 

 

 

 

у

 

 

 

В

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

х=5+4у–у2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

О

 

 

 

 

2

4

х

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 х

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

у= –х

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Perhaps the use of horizontal strips can simplify our work. So, the total area is given by

4

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

S = [5 + 4y y 2 ( y 2 2y 3)]dy = [8 + 6y 2 y 2 ]dy =

 

1

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

= 8y + 3y

2

 

2 y3

 

 

4

32 + 48

128

(8 + 3 +

2

) =

125

 

 

 

 

 

 

 

 

 

=

 

.

 

3

 

 

 

3

3

 

3

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Find the area

of the less

region bounded by the

ellipse x = 6 cos t ,

y = 4 sin t and the straight line

y = 2 3 ( y 2

3 ) .

 

 

 

 

 

 

Solution. The region is sketched in fig. 2.17. The given area S is equal to

S = 2SMNC = 2(SONCD SOMCD ) .

170

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]