
Гургула, Мойсишин "Розрахи з матана",
.pdf81
x1 −4x2 − x3 + 4x4 + 2x5 = 0,
−2x1 + x2 −5x3 −2x4 + x5 = 0,
9.24.
3x1 −5x2 + 4x3 +6x4 + x5 = 0,
4x1 −9x2 +3x3 +10x4 +3x5 = 0.
−4x1 −3x2 + 2x3 +3x4 − x5 = 0,
−6x1 + 2x2 +5x3 −7x4 + 4x5 = 0,
9.25.
x1 + x2 −2x4 +3x5 = 0,
−5x1 −3x2 + 2x3 −3x4 +5x5 = 0.
6x1 + 2x2 + x3 + x4 + 2x5 = 0,
9.26. −5x1 + 4x2 −4x3 −2x4 −5x5 = 0,x1 +6x2 −3x3 − x4 −3x5 = 0,
7x1 +8x2 −2x3 − x5 = 0.
1−5x2 −2x3 +3x4 + 2x5 = 0,
9.27.− x1 − x2 +3x3 + 2x4 −3x5 = 0,3x1 +6x2 − x3 −5x4 + x5 = 0,
−4x1 −7x2 + 4x3 +7x4 −4x5 = 0.
4x1 −3x2 − x3 −8x4 +10x5 = 0,
9.28.2x1 +7x2 −7x3 −6x4 +8x5 = 0,
3x1 + 2x2 −4x3 −7x4 +9x5 = 0,
x1 −5x2 +3x3 − x4 + x5 = 0.−2x
82
−3x2 −2x3 − x4 +7x5 = 0,
9.29. −5x1 +9x2 −4x3 −5x4 −2x5 = 0,x1 −5x2 − x3 − x4 +3x5 = 0,
4x1 −4x2 +5x3 +6x4 − x5 = 0.
5x1 + 4x3 −5x4 +6x5 = 0,
9.30.− x1 −3x2 − x3 − x4 −5x5 = 0,−4x1 +3x2 −3x3 +6x4 − x5 = 0,3x1 −6x2 + 2x3 −7x4 −4x5 = 0.
Задача 10. Визначити при яких λ однорідна система лінійних алгебраїчних рівнянь має нетривіальні розв′язки і знайти ці розв′язки.
λx −11y +13z = 0, |
9x −λy +11z = 0, |
|
|
|
|
10.1. 4x + 7 y − 6z = 0, |
10.2. 4x +7 y −16z = 0, |
|
|
|
|
−5x +18 y −19z = 0. |
13x +12 y −5z = 0. |
|
7x +8 y + λz = 0, |
6x +16 y −11z = 0, |
|
|
|
|
10.3. − 4x + 9 y − 6z = 0, |
10.4. λx + 7 y −16z = 0, |
|
|
|
|
15x −10 y + 23z = 0. |
17x +11y + 5z = 0. |
|
21x −11y + 9z = 0, |
17x −3y |
+16z = 0, |
|
|
−λz = 0, |
10.5. −9x + λy +18z = 0, |
10.6. 4x +17 y |
|
|
|
|
12x + y + 27z = 0. |
13x + 20 y −25z = 0. |
83
14x +19 y −13z = 0,
10.7.−8x −17 y +16z = 0,
−λx + 21y −10z = 0.
13y
10.9.8x +17 y − 6z = 0,
−5x + λy − 29z = 0.23z = 0,− +3x
−11y 14z
10.10.16x + λy −13z = 0,25x +12 y − 27z = 0.
−λx − y + 3z = 0,
10.11.4x +17 y −16z = 0,−5x +19 y − 25z = 0.
19x + λy −5z = 0,
10.12.−9x + 7 y − 21z = 0,
28x + 9 y +16z = 0.
− 23y − λz = 0,
10.13.− 4x + 9 y − 6z = 0,
12x − 4 y + 27z = 0.
− 2x + 26 y + z = 0,
10.14.−λx + 27 y − 6z = 0,
17x − 25 y −13z = 0.+ = 0,−9x
29x + 6 y − z = 0, 10.8. 7x −15 y + 7z = 0,
22x + 21y − λz = 0.
84
7x + 9 y −16z = 0,
10.15.−19x − λy +8z = 0,
26x − y − 24z = 0.
x −13y + 26z = 0,
10.16.14x −7 y +λz = 0,
15x −20 y +17z = 0.
25x +16 y − 7z = 0,
10.17.− x −17 y +16z = 0,λx +15 y + 2z = 0.
−9x +16 y − 4z = 0,
10.18.5x −18 y +13z = 0,14x −34 y + λz = 0.
−3x + 20 y +18z = 0,
10.19.16x −27 y + z = 0,13x −λy +19z = 0.
17x −3y − 4z = 0,
10.20.−5x −19 y −λz = 0,
22x +16 y −11z = 0.
λx −17z = 0,
10.21.14x −9 y +13z = 0,
−5x + 3y −10z = 0.
85
−5x −λy + 7z = 0,
10.22.−14x +9 y −5z = 0,
19x +13y − 2z = 0.
4x + 5 y + 21z = 0,
10.24.λx + 2 y − 7z = 0,
17x −11y = 0.
x−9 y +16z = 0,
10.26.17x +3y − λz = 0,
13x +12 y − 26z = 0.
x + 9 y −13z = 0,
10.27.−9x −13y +19z = 0,
−λx − 4 y + 6z = 0.
16x + y −3z = 0,
10.28.7x −15 y = 0,
23x −14 y − λz = 0.
17x −23z = 0,
10.29.5x +17 y +9z = 0,
−22x +λy −14z = 0.
−λx + 5 y − 23z = 0,
10.30.9x + 7 y + 6z = 0,
19 y −11z = 0.4
16x −3y + λz = 0,
10.23.−9 y +16z = 0,−8x −3y + 7z = 0.
− x +8 y +11z = 0,
10.25.−7x + λy +8z = 0,13x + y −5z = 0.
86 |
|
|
|
|
|
|
|
|
|
Задача 11. Лінійний оператор |
A заданий в деякому базисі |
||||||||
|
−1 |
1 |
|
0 |
|
|
|||
|
|
1 |
|
2 |
|
3 |
|
|
|
(e1 , e2 , e3 ) матрицею A = |
|
|
. Знайти матрицю |
||||||
|
|
−3 |
−2 |
|
1 |
|
|
||
~ |
|
|
|
|
|||||
|
|
|
|
|
~ |
~ |
~ |
||
A цього лінійного оператора в базисі (e1 |
, e2 , |
e3 ), якщо: |
|||||||
~ |
|
~ |
= e1 + e2 −e3 , |
||||||
11.1. e1 |
= e1 + 4e2 + 2e3 , e2 |
||||||||
~ |
= −e1 + e2 +e3 . |
|
|
|
|
|
|
|
|
e3 |
|
|
|
|
|
|
|
|
|
~ |
~ |
|
|
|
|
~ |
= −e1 + e2 −2e3 . |
||
11.2. e1 |
= 3e1 + e3 , e2 = e1 +2 e2 , |
e3 |
|||||||
~ |
|
~ |
= 2e1 |
+3e2 +5e3 , |
|||||
11.3. e1 |
= e1 + 2e2 + 2e3 , e2 |
||||||||
~ |
= 3e1 +7 e2 + 4e3 . |
|
|
|
|
|
|
|
|
e3 |
|
|
|
|
|
|
|
||
~ |
|
~ |
= 2e1 |
+ 2e2 +3e3 , |
|||||
11.4. e1 |
= e1 + 3e2 + 4e3 , e |
2 |
|||||||
~ |
= e1 + e2 −2e3 . |
|
|
|
|
|
|
|
|
e3 |
|
|
|
|
|
|
|
|
|
~ |
~ |
|
= 2e1 + e2 −e3 , |
||||||
11.5. e1 |
= e1 − 3e2 + 2e3 , e2 |
||||||||
~ |
= 3e1 e2 −e3 . |
|
|
|
|
|
|
|
|
e3 |
|
|
|
|
|
|
|
|
|
~ |
~ |
|
= e1 −3 e2 + 4e3 , |
||||||
11.6. e1 |
= e1 −e2 +5e3 , e2 |
||||||||
~ |
= e1 + 2 e2 − 4e3 . |
|
|
|
|
|
|
|
|
e3 |
|
|
|
|
|
|
|
|
|
~ |
~ |
= e1 −2 e2 −e3 , |
|||||||
11.7. e1 |
= e1 + e2 +3e3 , e |
2 |
|||||||
~ |
= −e1 +3e2 +e3 . |
|
|
|
|
|
|
|
|
e3 |
|
|
|
|
|
|
|
||
~ |
|
~ |
= −e1 |
+ e2 −e3 , |
|||||
11.8. e1 |
= 4e1 + 3e2 +e3 , e |
2 |
|||||||
~ |
= 3e1 − e2 −2e3 . |
|
|
|
|
|
|
|
|
e3 |
|
|
|
|
|
|
|
|
|
~ |
~ |
= e1 + e2 −4e3 , |
|||||||
11.9. e1 |
= e1 + 2e2 −e3 , e |
2 |
|||||||
~ |
= 2e1 − e2 +3e3 . |
|
|
|
|
|
|
|
|
e3 |
|
|
|
|
|
|
|
|
87
~ |
|
~ |
= 2e1 |
+ e2 +5e3 , |
11.10. e1 |
= e1 + e2 −2e3 , e2 |
|||
~ |
|
= −e1 +3e2 +e3 . |
|
|
e3 |
|
|
||
~ |
|
|
~ |
|
11.11. e1 |
= −3e1 + 2e2 +e3 , e2 = e1 + e2 +3e3 , |
|||
~ |
|
= 4e1 − e2 +5e3 . |
|
|
e3 |
|
|
||
~ |
|
~ |
|
+ 4e2 +8e3 , |
11.12. e1 |
= e1 + 3e2 +9e3 , e2 = e1 |
|||
~ |
|
= e1 −3e2 +5e3 . |
|
|
e3 |
|
|
||
~ |
|
~ |
= e1 +2 e2 +5e3 , |
|
11.13. e1 |
=4 e1 + e2 −e3 , e2 |
|||
~ |
|
= e1 −e2 + 2e3 . |
|
|
e3 |
|
|
11.14.e~1 = 2e1 −e2 +5e3 , e~2 = e1 + e2 , e~3 = 3e1 + 2 e2 +e3 .
~ |
|
~ |
= −e1 +2 e2 −6e3 , |
11.15. e1 |
= e1 + e2 +3e3 , e2 |
||
~ |
|
= 3e1 +5 e2 −e3 . |
|
e3 |
|
11.16.e~1 = e1 + e2 −2e3 , e~2 = e1 + e2 +e3 , e~3 = e1 −e2 +e3 .
~ |
|
~ |
= e1 −3 e2 −e3 , |
11.17. e1 |
=−4 e1 + e2 +e3 , e2 |
||
~ |
|
= 3e1 +3e2 +e3 . |
|
e3 |
|
||
~ |
|
~ |
= e1 −2 e2 −3e3 , |
11.18. e1 |
= 2e1 + e2 +3e3 , e2 |
||
~ |
|
= −4e1 +3e2 +e3 . |
|
e3 |
|
||
~ |
|
~ |
|
11.19. e1 |
= e1 + e2 + 2e3 , e2 =−5 e1 −4 e2 +3e3 , |
||
~ |
|
= −e1 +e2 −5e3 . |
|
e3 |
|
||
~ |
|
~ |
= 5e1 −4 e2 −2e3 , |
11.20. e1 |
= 2e1 + 3e2 −e3 , e2 |
||
~ |
|
= e1 +e2 +e3 . |
|
e3 |
|
88
11.21.e~1 = 3e1 + e2 + 2e3 , e~2 =−5 e1 + 2e2 −7e3 , e~3 = 3e1 +e2 −e3 .
~ |
= e1 + e2 |
~ |
=−e1 |
−4e2 |
+ 2e3 , |
|
11.22. e1 |
+e3 , e2 |
|||||
~ |
|
= −6e1 |
+6 e2 +5e3 . |
|
|
|
e3 |
|
|
11.23.e~1 = 2e1 + 3e2 +e3 , e~2 = e1 − e2 −2e3 , e~3 = −e1 + 2 e2 +e3 .
~ |
|
~ |
|
=3e1 |
−2e2 +e3 , |
11.24. e1 |
= e1 + 3e2 + 2e3 , e2 |
||||
~ |
|
= e1 +e2 −4e3 . |
|
|
|
e3 |
|
|
|
||
~ |
|
~ |
= e1 |
− e2 −2e3 , |
|
11.25. e1 |
=−3e1 + e2 −e3 , e2 |
||||
~ |
|
= e1 +3e2 + 2e3 . |
|
|
|
e3 |
|
|
|
||
~ |
|
~ |
=−e1 |
+2 e2 +3e3 , |
|
11.26. e1 |
= 2e1 + e2 +e3 , e2 |
||||
~ |
|
= −e1 +3e2 + 4e3 . |
|
|
|
e3 |
|
|
|||
~ |
|
~ |
= −4e1 + e2 +3e3 , |
||
11.27. e1 |
= e1 + 2e2 +e3 , e2 |
||||
~ |
|
= 2e1 −3e2 +e3 . |
|
|
|
e3 |
|
|
|
||
~ |
|
~ |
= e1 |
+2e2 −3e3 , |
|
11.28. e1 |
= e1 + 2e2 + 4e3 , e |
2 |
|||
~ |
|
= −3e1 +3e2 +e3 . |
|
|
|
e3 |
|
|
|||
~ |
|
~ |
= e1 + e2 +3e3 , |
||
11.29. e1 |
= 3e1 + e2 + e3 , e2 |
||||
~ |
|
= e1 −2 e2 +3e3 . |
|
|
|
e3 |
|
|
|
||
~ |
|
~ |
|
=3e1 |
+ e2 + 2e3 , |
11.30. e1 |
=2e1 + 3e2 +e3 , e2 |
||||
~ |
|
= e1 +2e2 −e3 . |
|
|
|
e3 |
|
|
|
Задача 12. Знайти власні значення та власні вектори лінійного оператора, заданого в деякому базисі матрицею.
|
2 |
|
−1 |
|
1 |
|
|
|
|
−1 |
|
2 |
|
|
|
|
|
12.1. |
|
−1 . |
||||||
|
0 |
|
0 |
|
1 |
|
|
|
|
|
|
|
|
||||
|
4 |
|
−1 −1 |
|
||||
|
1 |
|
2 |
|
1 |
|
|
|
12.3. |
|
|
. |
|||||
|
|
|
|
2 |
|
3 |
|
|
−2 |
|
|
|
|
||||
|
5 |
|
2 |
−2 |
|
|||
|
1 |
|
4 |
|
1 |
|
|
|
12.5. |
|
|
. |
|||||
|
−1 |
|
−1 |
|
6 |
|
|
|
|
|
|
|
|
||||
|
3 |
0 |
2 |
|
|
|
|
|
|
2 |
5 |
−2 |
|
|
|
||
12.7. |
. |
|
||||||
|
0 |
0 |
5 |
|
|
|
|
|
|
|
|
|
|
||||
|
|
7 |
|
−2 |
|
0 |
|
|
|
−4 |
|
5 |
|
0 |
|
|
|
12.9. |
|
|
. |
|
||||
|
−2 |
|
−2 |
|
9 |
|
|
|
|
|
|
|
|
||||
|
|
11 |
−2 |
|
|
2 |
|
|
|
|
−6 |
15 |
|
|
6 |
|
|
12.11. |
|
|
. |
|||||
|
|
−2 |
2 |
|
19 |
|
||
|
|
|
|
|||||
|
|
2 |
|
1 |
|
0 |
|
|
|
|
1 |
|
2 |
|
0 |
|
|
12.13. |
|
|
. |
|
||||
|
|
−1 |
−1 |
|
1 |
|
|
|
|
|
|
|
|
||||
|
|
4 |
|
−1 |
|
|
1 |
|
|
|
−2 |
3 |
|
|
|
|
|
12.15. |
|
−2 . |
||||||
|
|
−1 |
−1 |
|
|
2 |
|
|
|
|
|
|
|
89
|
|
5 |
|
|
0 |
0 |
|
|
|
|
|
|
−1 |
|
4 |
|
|
|
|
|
|||
12.2. |
|
−1 . |
|
|
|||||||
|
−1 |
−1 |
4 |
|
|
|
|
||||
|
|
|
|
|
|||||||
|
2 |
|
1 |
−1 |
|
|
|
|
|||
|
1 |
|
2 |
1 |
|
|
|
|
|
||
12.4. |
|
. |
|
|
|
|
|||||
|
0 |
|
0 |
3 |
|
|
|
|
|
||
|
|
|
|
|
|
|
|||||
|
|
3 |
|
2 |
2 |
|
|
|
|||
|
|
|
|
|
−1 |
− |
2 |
|
|
|
|
12.6. −2 |
. |
|
|||||||||
|
|
2 |
|
2 |
3 |
|
|
|
|||
|
|
|
|
|
|
||||||
|
|
5 |
|
|
4 |
6 |
|
|
|
||
|
−2 |
−1 |
|
|
|
|
|||||
12.8. |
−6 . |
|
|||||||||
|
|
4 |
|
|
4 |
7 |
|
|
|
||
|
|
|
|
|
|
|
|||||
|
|
|
|
4 |
1 |
1 |
|
|
|
|
|
|
|
|
|
−3 |
2 |
1 |
|
|
|
|
|
12.10. |
. |
|
|
||||||||
|
|
|
|
3 |
1 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
5 |
−2 |
2 |
|
|
|||
|
|
|
|
|
|
7 |
2 |
|
|
||
12.12. −4 |
. |
||||||||||
|
|
|
|
0 |
|
0 |
9 |
|
|
||
|
|
|
|
|
|
|
|||||
|
|
|
|
|
5 |
1 |
|
1 |
|
|
|
|
|
|
|
|
0 |
4 |
|
|
|
|
|
12.14. |
−1 . |
||||||||||
|
|
|
|
|
0 |
−1 |
4 |
|
|
||
|
|
|
|
|
|
|
|||||
|
|
|
|
|
3 |
|
0 |
|
0 |
|
|
|
|
|
|
|
−1 |
2 |
− |
|
|
||
12.16. |
1 . |
||||||||||
|
|
|
|
|
1 |
−1 |
|
2 |
|
||
|
|
|
|
|
|
|
90
6
12.17.−2−1
4
12.19.10
1
12.21.20
7
12.23.−66
4
12.25.0−1
−5
12.27.24
6
12.29.1−1
1
4
0
0
3
0
−1 |
1 |
|
5 |
−2 |
|
. |
||
−1 |
4 |
|
|
||
−1 |
|
|
1 |
|
|
. |
|
|
5 |
|
|
|
|
−2 .
22
32 .
23
21
3−1 .
−2 2
02
−3 −2 .
0−7
2 |
1 |
|
5 |
|
|
−1 . |
||
−2 |
4 |
|
|
|
|
2 |
1 |
−1 |
|
|||
|
|
0 |
1 |
|
0 |
|
|
|
12.18. |
|
|
. |
|||||
|
−1 |
−1 |
2 |
|
|
|||
|
|
|
||||||
|
|
5 |
2 |
2 |
|
|
|
|
|
−4 |
1 |
0 |
|
|
|
||
12.20. |
. |
|
||||||
|
|
4 |
2 |
3 |
|
|
|
|
|
|
|
|
|
||||
|
5 |
2 |
4 |
|
|
|
||
|
0 |
3 |
|
|
|
|
||
12.22. |
−4 . |
|
||||||
|
2 |
2 |
7 |
|
|
|
||
|
|
|
|
|||||
|
3 |
−2 |
− |
2 |
|
|
||
|
0 |
|
5 |
2 |
|
|
||
12.24. |
|
. |
|
|||||
|
0 |
|
4 |
7 |
|
|
||
|
|
|
|
|||||
|
2 |
−1 |
1 |
|
|
|||
|
|
2 |
1 |
|
|
|||
12.26. −1 |
. |
|
||||||
|
0 |
0 |
|
|
|
|||
|
3 |
|
||||||
|
|
11 |
−4 |
|
0 |
|
||
|
|
−2 |
13 |
|
0 |
|
||
12.28. |
|
. |
||||||
|
|
2 |
|
1 |
15 |
|
||
|
|
|
|
|||||
|
|
9 |
−2 |
−2 |
|
|||
|
−6 |
5 |
|
2 |
|
|||
12.30. |
|
. |
||||||
|
−6 |
−2 |
13 |
|
||||
|
|
Задача 13. Самоспряжений лінійний оператор A заданий матрицею А в деякому ортонормованому базисі (e1 , e2 , e3 ).