Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекция 5.Однокомп. гет. сист..doc
Скачиваний:
35
Добавлен:
17.02.2016
Размер:
157.7 Кб
Скачать

4.5.2. Полиморфизм

Кристаллическая структура вещества определяется не только его химическим составом, но и условиями образования. В природе существует множество примеров, когда в зависимости от условий образования, вещества могут иметь различную структуру кристаллов, т.е. тип решетки, и поэтому различные физические свойства. Это явление называется полиморфизмом.Присутствие той или иной модификации вещества может таким образом характеризовать условия его образования. Полиморфные модификации обозначают греческими буквами,,,.

Возможны два типа полиморфизма: энантиотропный и монотропный.

Энантиотропияхарактеризуется обратимым самопроизвольным переходом при определенных Р и Т одной формы в другую. Этот переход сопровождается снижением энергии Гиббса при изменении термодинамических условий (Р,Т). На рис. 4.2 показан энантиотропный переход от фазык фазепри (Р,Т). До температуры и давления фазового перехода (левее точки (Р,Т)) более устойчива-модификация вещества, т.к. она обладает меньшим запасом свободной энергии G. В точке пересечения кривых G=G, обе фазы находятся в равновесии. За этой точкой, т.е. при высоких Р и Т, устойчивее-фаза. Таким образом,-фаза является низкотемпературной, авысокотемпературной модификацией вещества.

Рис. 4.2. Изменение функции Гиббса при энантиотропии

Энантиотропные превращения характерны для углерода, серы, двуокиси кремния и многих других веществ.

Если во всем интервале Р и Т стабильна только одна фаза, то фазовый переход не связан с определенными значениями Р и Т и является необратимым. Такой тип полиморфизма называется монотропией (рис.4.3).Более стабильна та фаза, энергия Гиббса которой ниже (на рис. 4.3. фаза ). Монотропные формы в природных условиях встречаются реже; примером может служить система

Fe2O3Fe2O3

маггемит гематит

Рис. 4.3. Изменение энергии Гиббса при монотропии

На фазовой диаграмме полиморфизм вещества характеризуется дополнительными линиями, ограничивающими области существования отдельных полиморфных модификаций.

4.5.3. Фазовая диаграмма серы

В качестве примера рассмотрим диаграмму состояния серы, которая может существовать в виде ромбической или моноклинной серы, т.е. она диморфна. На фазовой диаграмме серы (рис. 4.4), в отличие от диаграммы воды, два поля твердых фаз: область ромбической серы (слева от линии EABD, поле 1) и моноклинной (внутри треугольника АВС, поле 2). Поле 3 – область расплавленной серы, поле 4 – парообразная сера.

ВС кривая плавления моноклинной серы,

BDкривая плавления ромбической серы,

АВ кривая полиморфного превращения: Sромб ↔ Sмонокл

ЕА и АС кривые возгонки ромбической и моноклинной серы, соответственно,

СК кривая испарения жидкой серы.

Пунктирные линии отражают возможность существования метастабильных фаз, которые можно наблюдать при резком изменении температуры:

АО: [Sромб] ↔ (S); СО: {S}↔ (S); ВО: [Sромб] ↔ {S}.

Рис. 4.4. Диаграмма состояния серы

Тройные точки соответствуют трехфазным равновесиям: А ромбическая, моноклинная и парообразная сера; Смоноклинная, жидкая и парообразная; Вромбическая, моноклинная и жидкая сера. В точке О (точка пересечения пунктирных линий внутри треугольника)метастабильное равновесие трех фаз: ромбической, жидкой и парообразной.

Таким образом, пользуясь фазовой диаграммой, можно определить фазовое состояние вещества в данных условиях или, наоборот, обнаружив ту или иную полиморфную модификацию вещества (например, сплава или минерала), охарактеризовать условия его образования.