Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
KBTU_Exam_Questions_-answers (1).docx
Скачиваний:
21
Добавлен:
17.02.2016
Размер:
1.69 Mб
Скачать
  1. Isochor

Isochor (изохоры) -- линии, соединяющие точки с равными вертикальными расстояниями между ранее установленным опорным горизонтом и тем горизонтом, по которому требуется построить структурную карту.

линия на диаграммах состояния.

  1. Horisons

местное стратиграфическое подразделение, отвечающее ярусу или подъярусу общей принятой стратиграфической шкалы и включающее одновозрастные породы разного литологического состава.

  1. Caliper

КАВЕРНОМЕР (от лат. caverna — пещера, полость * а. caliper, downhole gage; Н. Kalibermeßgerдt, Kalibersonde, Kalibermesser; ф. diametreur; и. medidor de calibre, calibrator) — прибор для измерения поперечного размера скважины.

Каверномер состоит из скважинного прибора, спускаемого в скважину на каротажном кабеле, и наземной аппаратуры (каротажная станция). Применяются в основном каверномеры с рычажным измерительным устройством и резисторными преобразователями линейных перемещений в электрический сигнал. В нефтяных и газовых скважинах в основном используются четырёхрычажные каверномеры (типа CKB, KC-3) и каверномер-профилемер, измеряющий 2 хорды сечения скважины (тип СКП1), в геологоразведочных скважинах — малогабаритные каверномеры (тип KM-1).

Диапазон измерения каверномеров, используемых при бурении нефтяных и газовых скважин, 100-760 мм, термобаростойкость 150°С, 100 МПа,

  1. Dipmeter

прибор для определения падения пластов в скважинах. Представляет собой инклинометр, дополненный тремя расположенными по кольцу через 120o электродами, регистрирующими естественные потенциалы на границах наклонных пластов на разной глубине.

  1. Dipangle

Угол образованный линией падения и ее проекцией на горизонтальную плоскость (угол падения – двухгранный угол между плоскостью падения пласта и горизонтальной плоскостью).

  1. Azimuth

Azimuth - angle in the horizontal plane, measured clockwise from the north direction to the projection of the fall line on the horizontal plane.

Азимут – угол в горизонтальной плоскости, отсчитываемый по часовой стрелке от северного направления к проекции линии падения на горизонтальную плоскость.

  1. Bearing Line of Formation(линия простирания пласта)

Bearing Line of Formation - the line of intersection of the oil reservoir with the horizontal plane

Линия простирания пласта – линия пересечения нефтяного пласта с горизонтальной плоскостью

  1. Falling Line of Formation(линия падения пласта)

Falling Line of Formation – the line lying in the plane of the reservoir and perpendicular to the Bearing Line of Formation

Линия падения пласта – линия, лежащая в плоскости пласта и перпендикулярная к линии простирания

  1. Faults

Faults - is a planar fracture or discontinuity in a volume of rock, across which there has been significant displacement along the fractures as a result of earth movement.

In geology, a fault is a planar fracture or discontinuity in a volume of rock, across which there has been significant displacement along the fractures as a result of earth movement. Large faults within the Earth's crust result from the action of plate tectonic forces, with the largest forming the boundaries between the plates, such as subduction zones or transform faults. Energy release associated with rapid movement on active faults is the cause of mostearthquakes.

Each fault cuts the entire rock mass into two fault-blocks. In the case of non-vertical faults, the fault-block lying below the fault plane is called the footwall, regardless of the sense of displacement of the fault, and the block above the fault is called the hangingwall.

The majority of faults are not vertical; instead, most are inclined. The angle “down” from horizontal is called the dip of the fault plane, and the compass direction of the horizontal line lying in the fault plane is called the strike (Fig. 1). A vertical fault has a dip of 90o, and non-vertical faults have dips that range from very shallow (10-30o) to moderate (40-60o) to steep (70-89o). The dip of the fault plane, along with the sense of motion (see below), is used to categorise the types of faults.

  1. Normal Fault

Normal Fault (сброс) - A geologic fault in which the hanging wall has moved downward relative to the footwall. Normal faults occur where two blocks of rock are pulled apart, as by tension.

We classify faults by how the two rocky blocks on either side of a fault move relative to each other. The one you see here is a normal fault. A normal fault drops rock on one side of the fault down relative to the other side. Take a look at the side that shows the fault and arrows indicating movement. See the block farthest to the right that is shaped kind of like a foot? That's the foot wall. Now look at the block on the other side of the fault. See how it's resting or hanging on top of the foot wall block? That's the hanging wall.

Now, consider this: if we hold the foot wall stationary, gravity will normally want to pull the hanging wall down, right? Faults that move the way you would expect gravity to move them normally are called normal faults! Not so hard, is it?

Take a look where the fault has ruptured the Earth surface. Notice that movement along the fault has produced an elongate cliff? That fault-generated cliff is called a fault scarp.

  1. Reverse Fault

Reverse Fault ( взброс) - A geologic fault in which the hanging wall has moved upward relative to the footwall. Reverse faults occur where two blocks of rock are forced together by compression.

If the hangingwall rises over the footwall, this is called a reverse fault. Reverse faults (thrusts are reverse faults whose dip is low - less than 25o) are associated with shortening (lateral decrease in dimension).

  1. Strike Slip

Strike-slip faults have a different type of movement than normal and reverse faults. You probably noticed that the blocks that move on either side of a reverse or normal fault slide up or down along a dipping fault surface.

The rocky blocks on either side of strike-slip faults, on the other hand, scrape along side-by-side. You can see in the illustration that the movement is horizontal and the rock layers beneath the surface haven't been moved up or down on either side of the fault.

Take a look where the fault has ruptured the Earth surface. Notice that pure strike-slip faults do not produce fault scarps. There are other tell-tale changes in the landscape that signal strike-slip faulting. As you might guess, where the two massive blocks on either side of a strike-slip fault grind against each other, rock is weakened. Streams flowing across strike-slip faults are often diverted to flow along this weakened zone.

  1. Listric Fault

A listric fault is a curved fault that is steeply-dipping at shallow structural levels, and gently-dipping at deeper levels. Listric normal faults are important in extensional domains because they provide for rotations of fault blocks.

Listric faults are similar to normal faults but the fault plane curves, the dip being steeper near the surface, then shallower with increased depth. The dip may flatten into a sub-horizontal décollement, resulting in horizontal slip on a horizontal plane. The illustration shows slumping of the hanging wall along a listric fault. Where the hanging wall is absent (such as on a cliff) the footwall may slump in a manner that creates multiple listric faults.

  1. Fault Polygons

Fault polygons are line data representing the hanging-wall and footwall for each horizon. The polygons could be separated into lines for each fault or lines for each horizon.

Fault polygons – The intersection of a fault plane with a structural surface defines a line refereed to as a fault trace and is stored as a polygon in mapping systems. The polygon is usually a closed figure having two sides, up‐thrown

and down‐thrown. Often polygons for multiple faults are joined together into one large convoluted shaped polygon. These large multi‐fault polygons must be separated at the bifurcations before being used in the fault modeling process.

Fig. 5.4: Fault Polygons displayed in a 3D window while the Fault Model Options and Fault Model Tools are displayed

  1. Fault Stick

Fault sticks – The intersection of a seismic section and a fault plane defines a line. If that line is digitized and stored in the seismic interpretation it is called a fault stick. Multiple sticks representing one fault are normally grouped together in one file. Sometimes these are converted from sticks to “horizons” so they can be output just as an interpreted horizon is.

  1. Key Pillars

Key Рillar - вертикальная, линейная, листрическая или искривленная линия, состоящая из двух, трех или пяти точек (Shape points). Падение, азимут, длина и форма определяют плоскости разломов посредством Пилларов.

Shape point

  1. Shape point

точки, из которых состоит Пиллар. В зависимости от типа Пиллара, он может иметь 2, 3 или 5 shape points.

  1. Pillar Gridding

The generation of the structural model is done in a process called Pillar Gridding. Pillar Gridding is a unique concept in Petrel where the faults in the fault model are used as a basis for generating the 3D grid. Pillar Gridding is the process of making the ‘Skeleton Framework’. There is a close relationship between the Fault Modeling process and the Pillar Gridding process. The relation between the Fault Modeling process and the Pillar Gridding is an iterative process with which the user should spend some time in order to attain a grid of good quality and high cell orthogonality. The result from the Pillar Gridding is a set of pillars both along the faults but also in between faults. Before starting Pillar Gridding, a series of checks need to be performed to ensure that the fault modeling process is complete.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]