Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
LEK_5_05.doc
Скачиваний:
226
Добавлен:
14.02.2016
Размер:
369.66 Кб
Скачать

3. Совершенная дизъюнктивная нормальная форма и совершенная конъюнктивная нормальная форма.

Известно два способа задания логических функций: с помощью формулы и с помощью таблицы истинности. По формуле легко составляется таблица. На практике при конструировании различных электронных устройств часто возникает обратная задача – от таблицы истинности перейти к формуле, чтобы на ее основе построить функциональную схему.

Введем следующие определения:

Элементарной конъюнкцией называется конъюнкция нескольких переменных, взятых с отрицанием или без отрицания, причем среди переменных могут быть одинаковые.

Элементарной дизъюнкцией называется дизъюнкция нескольких переменных, взятых с отрицанием или без отрицания, причем среди переменных могут быть одинаковые.

Всякую дизъюнкцию элементарных конъюнкций назовем дизъюнктивной нормальной формой (ДНФ).

Всякую конъюнкцию элементарных дизъюнкций назовем конъюнктивной нормальной формой (КНФ).

Совершенной дизъюнктивной нормальной формой (СДНФ) называется ДНФ, в которой нет одинаковых элементарных конъюнкций и все конъюнкции состоят из одного и того же набора переменных, в который каждая переменная входит только один раз (возможно, с отрицанием).

Совершенной конъюнктивной нормальной формой (СКНФ) называется КНФ, в которой нет одинаковых элементарных дизъюнкций и все дизъюнкции состоят из одного и того же набора переменных, в который каждая переменная входит только один раз (возможно, с отрицанием).

Приведем примеры формул, соответствующих и не соответствующих этим определениям:

НАЗВАНИЕ ФОРМУЛЫ

В ОПРЕДЕЛЕНИИ

Формула,

соответствующая определению

ФОРМУЛА,

НЕ СООТВЕТСТВУЮЩАЯ

ОПРЕДЕЛЕНИЮ

Элементарная

дизъюнкция

Элементарная

конъюнкция

ДНФ

ДНФ можно построить для всякой формулы (путем преобразования)

КНФ

КНФ можно построить для всякой формулы (путем преобразования)

СДНФ

СКНФ

Любую функцию, кроме констант 0 и 1, можно представить в виде как СДНФ, так и СКНФ.

Этот факт является теоремой алгебры логики. Из него следует, что любая формула (кроме констант 0 и 1) может быть преобразован к виду как СДНФ, так и СКНФ. Константа 0 может быть представлена только СКНФ (), а константа 1 – только СДНФ (). Из вышесказанного следует, что если надо построить формулу некоторой функции по таблице истинности этой функции, то всегда можно получить СКНФ или СДНФ этой функции.

Алгоритм получения СДНФ по таблице истинности:

  1. Отметить те строчки таблицы истинности, в последнем столбце которых стоят 1:

X

Y

F(X,Y)

0

0

0

0

1

1*

1

0

1*

1

1

0

  1. Выписать для каждой отмеченной строки конъюнкциювсех переменных следующим образом: если значение некоторой переменной в данной строкеравно 1, то в конъюнкцию включатьсаму эту переменную, еслиравно 0, то ееотрицание:

– для 2-й строки;

– для 3-й строки.

  1. Все полученные конъюнкции связать в дизъюнкцию: .

Алгоритм получения СКНФ по таблице истинности:

  1. Отметить те строки таблицы истинности, в последнем столбце которых стоит 0:

X

Y

F(X,Y)

0

0

0*

0

1

1

1

0

1

1

1

0*

  1. Выписать для каждой отмеченной строки дизъюнкциювсех переменных следующим образом: если значение некоторой переменной в данной строкеравно 0, то в дизъюнкцию включатьсаму эту переменную, еслиравно 1, то ееотрицание:

– для 1-й строки;

– для 4-й строки.

  1. Все полученные дизъюнкции связать в конъюнкцию: .

Покажем, что полученные по двум алгоритмам СДНФ и СКНФ эквивалентны. Преобразуем СКНФ по правилам алгебры логики: .

Примечание: для нахождения формулы по таблице истинности рекомендуется использовать тот из двух алгоритмов, в котором в таблице помечается меньше строк.

  1. ТИПОВЫЕ ЛОГИЧЕСКИЕ УСТРОЙСТВА ЭВМ.

К типовым логическим устройствам ЭВМ относятся сумматоры, полусумматоры, триггеры, счетчики, регистры, шифраторы, дешифраторы.

    1. СУММАТОРЫ.

Сумматор является основным узлом арифметико-логического устройства ЭВМ и служит для суммирования чисел посредством поразрядного сложения.

Сумматор выполняет сложение многозначных двоичных чисел. Он представляет собой последовательное соединение одноразрядных двоичных сумматоров, каждый из которых осуществляет сложение в одном разряде. При этом если сумма двух цифр в данном разряде больше или равна основанию используемой системы счисления, то возникает перенос старшего разряда в соседний сумматор.

Одноразрядный сумматор должен иметь два выхода: для суммы и для переносимого значения. У него может быть два или три (для складываемых значений и значения переноса) входа.

Одноразрядный двоичный сумматор на два входа и два выхода называется одноразрядным полусумматором.

Одноразрядный двоичный сумматор на три входа и два выхода называется одноразрядным сумматором на три входа.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]