
- •Глава 1. Структурная организация и принципы функционирования белков Основные проявления жизни - результат функционирования белков
- •Аминокислоты - главные составные части белков
- •Свойства аминокислот - основа свойств белков
- •Спектроскопические свойства аминокислот
- •Химические реакции
- •Методы разделения аминокислот
- •Аминокислота, полипептид, белок
- •Свойства белков определяются свойствами аминокислот
- •Знание иэт важно для разделения белков методом электрофореза
- •Гель-электрофорез
- •Белки выполняют роль буферных систем
- •Белки в воде образуют растворы с особыми свойствами
- •В пространственой структуре белков выделяют четыре уровня организации
- •Исследование первичной структуры белков и пептидов
- •Искусственный синтез белков и пептидов
- •Пространственная структура белковой молекулы
- •Вторичная структура белков
- •Третичная структура белков
- •Четвертичная структура белков
- •Белки чувствительны к внешним воздействиям
- •Для определения количества белков используют разные подходы
- •Белки классифицируются разными способами
- •Простые белки построены только из аминокислот
- •Сложные белки содержат небелковые компоненты
- •Глава 2. Ферменты Клинико-лабораторное значение
- •Немного истории
- •В основе классификации ферментов - тип катализируемой реакции
- •Элементы химической логики
- •В основе химических реакций лежит образование и разрыв химических связей
- •У химической реакции есть скорость и порядок
- •На пути к пониманию механизма действия фермента
- •Ферменты – биологические катализаторы белковой природы
- •Методы выделения и очистки ферментов - это методы выделения и очистки белков.
- •Пример вычисления активности фермента:
- •Для работы некоторых ферментов необходимы дополнительные небелковые соединения
- •Белковая природа определяет многие свойства ферментов
- •Повышение температуры неоднозначно влияет на активность фермента
- •Ферменты характеризуются высокой специфичностью
- •Активность фермента зависит от концентрации субстратов.
- •Важной качественной характеристикой фермента является константа Михаэлиса
- •Уравнение Михаэлиса и Ментен графически – прямоугольная гипербола
- •Примеры использования данных кинетических исследований ферментов в медицине
- •Кинетика мультисубстратных реакций
- •Скорость реакции зависит от концентрации фермента
- •Химические реакции протекают медленно
- •Ферменты превосходят другие катализаторы своей молекулярной активностью. Почему?
- •Группы активного центра фермента используют обычные химические принципы катализа
- •Реакции, катализируемые ферментами – основной объект, на который направлено действие регуляторов процессов жизнедеятельности
- •Активность ферментов можно тормозить (ингибировать)
- •Ингибиторы бывают разные: обратимые и необратимые
- •Обратимые ингибиторы могут быть конкурентными и неконкурентными
- •Конкурентные ингибиторы не всегда структурно подобны субстрату.
- •Конкурентные ингибиторы не влияют на Vmax, они понижают Км.
- •Принципы конкурентного торможения находят применение в медицинской практике.
- •Смешанные неконкурентные ингибиторы
- •Кинетика смешанных неконкурентных ингибиторов
- •Неконкурентные ингибиторы не могут связаться со свободным ферментом.
- •Неконкурентных ингибиторы неактивны при низких концентрациях субстрата.
- •Торможение продуктом реакции- пример конкурентного торможения.
- •Субстрат может быть ингибитором фермента
- •Кинетика многих ферментов не подчиняется принципам кинетики Михаэлиса и Ментен
- •У аллостерических ферментов особые свойства
- •Две модели объясняют механизмы аллостерии.
- •В основе связывания субстрата - индуцированное взаимодействие.
- •Изменение конформации одной субъединицы индуцирует изменения структуры другой
- •Какая гипотеза является правильной?
- •Ферменты неравномерно распределены внутри клеток
- •Доступность субстрата или кофактора - важный элемент регуляции активности ферментов
- •Нарушение функции фермента вызывает болезнь.
- •Энзимопатии следствие ошибок в синтезе белков.
- •Исследование активности ферментов помогает врачу в диагностике болезней.
- •Некоторые примеры использования измерения активности ферментов в диагностике
- •Определение концентрации субстратов возможно при помощи ферментов.
- •Ферменты можно использовать как лекарственные препараты.
- •Рибозимы –исключение , подтверждающее правило.
- •Методы молекулярной инженерии позволяют конструировать новые ферменты
- •Глава 3. Витамины
- •Классификация витаминов
- •Нарушение баланса витаминов в организме
- •Потребность организма человека в витаминах.
- •Причины дисбаланса витаминов в организме.
- •Межвитаминные взаимоотношения
- •Витамин в1 (Tиамин. Антиневритный витамин)
- •Витамин в2(Рибофлавин).
- •Пантотеновая кислота (витамин в3).
- •Витамин рр (Витамин в5 , никотиновая кислота, никотинамид, ниацин). Антипеллагрический витамин.
- •Гомоцис- Серин Цистатионин α-кетобутират Цистеин
- •Фолиевая кислота (Фолацин. Витамин в9. Витамин вс).
- •Фолиевая кислота
- •Метилен-тгфк- Метилен-тгфк-
- •Биотин (витамин н).
- •Пропионил-КоА метилмалонил-КоА
- •Метилмалонил-КоА пируват пропионил-КоА оксалацетат
- •Витамин с (аскорбиновая кислота), антицинготный
- •Остаток глутаминовой кислоты Остаток γ-карбоксиглутаминовой кислоты
- •Рибосомы на мембране эндо-
- •Сигнальный пептид
- •Витаминоподобные соединения Витамин f (эссенциальные жирные кислоты)
- •Инозит(Витамин в8)
- •Карнитин
- •Липоевая кислота (витамин n)
- •Пара-Аминобензойная кислота.
- •Витамин u
- •Холин (витамин в4).
- •Ацетилхолинэстераза н2о
- •Глава 4. Введение в термодинамику Биомедицинское значение.
- •Биоэнергетика- составная часть термодинамики
- •Функции состояния системы.
- •Первый закон термодинамики утверждает энергия вселенной не исчезает
- •Второй закон термодинамики указывает на вероятность и направление процесса
- •Свободная энергия и концентрация. Стандартное состояние в биологических реакциях.
- •Изменение свободной энергии и константа равновесия.
- •Примеры вычисления констант равновесия и изменений свободной энергии
- •Сопряженные реакции лежат в основе многих химических процессов в клетке.
- •«Энергетической валютой» клетки является атф
Ацетилхолинэстераза н2о
холин + ацетат
Фосфохолин, активируясь с помощью ЦДФ, используется для синтеза фосфатидилхолина (лецитина). Помимо участия в синтезе лецитина, холин необходим для синтеза другого липида – сфингомиелина который образуется путём переноса холина от фосфатидилхолина к церамиду.
Холин является донором метильных групп в реакциях трансметилирования (например, образующийся при окислении холина бетаин служит источником метильных групп в реакциях синтеза метионина).
Недостаточность холина. Проявления недостаточности холина у человека не описаны. У животных отмечаются жировая инфильтрация печени, геморрагии почек и повреждение кровеносных (особенно коронарных) сосудов.
Суточная потребность. Пищевые источники. Пищевым источником холина являются мясо и злаковые растения.
Суточная потребность составляет в среднем 0,5 г.
Глава 4. Введение в термодинамику Биомедицинское значение.
Каждое утро просыпаясь, человек окунается в поток энергии, который обеспечивает его процессы жизнедеятельности. Родник этого потока - солнечный свет. Растения при помощи фотосинтеза трансформируют энергию света в химическую энергию углеводов и других молекул, входящих в состав пищевых продуктов. Пищевые продукты потребляются человеком и энергия этих соединений обеспечивает выполнение всех биологических функций.
Понимание того как организм получает энергию из пищевых продуктов, каковы взаимоотношения между поступлением и расходом энергии лежит в основе организации правильного питания и позволяет избежать нарушений, связанных с изменением этого соотношения, которые проявляются в форме наиболее распространенной болезни цивилизации - ожирении. Недостаточное поступление энергетически важных продуктов может приводить энергетическому дисбалансу (маразм) или даже к смерти при длительном голодании.
Биоэнергетика- составная часть термодинамики
Количественным анализом того, как организмы получают и используют энергию, занимается биоэнергетика. Она является составной частью более общей науки - термодинамики. Термодинамика - удивительная наука. Она пользуется законами, описывающими взаимопревращение различных форм энергии. Знание термодинамики позволяет ответить на вопрос о возможности самопроизвольного протекания физического процесса. Она позволяет понять, почему макромолекулы приобретают свою нативную, на первый взгляд такую причудливую конформацию, почему молекулы проходят через биологические мембраны, как мышца генерирует механические силы и многие другие важные для проявления процессов жизнедеятельности проблемы. Следует сразу предупредить, что термодинамика не описывает скорости процесса. Время исключается из поля зрения ее законов. В биохимии наиболее часто понятия термодинамики связаны с вопросами вероятности самопроизвольного протекания процесса (спонтанности процесса).
Система и вселенная.
Жизнь
только часть вселенной. Законы
термодинамики удобно изучать на отдельных
ее частях. Эти части получили название
систем. Термодинамическая система –
это часть вселенной (это тела, совокупность
тел и т.д.), обособленной от окружающей
среды мысленными или реально существующими
границами. Существует несколько типов
систем, различающихся по принципу
взаимоотношений их с окружающей средой.(
см рис)
Рис -1. Типы систем, различающихся по принципу их взаимоотношений с окружающей средой
Изолированная система не обмениваются с окружением ни веществами, ни энергией. Существование таких систем сомнительно.
Закрытая система обменивается с окружением только энергией. Например, закрытый стакан горячего чая.
Открытая система обменивается с окружением и веществами и энергией. Примером такой системы является клетка.